
OpenDataHub Docs Documentation
Release 1.0

The Open Data Hub Team

May 20, 2019

Table of Contents

1 Introduction 1
1.1 Project Overview . 1

2 How To Contribute 7
2.1 As a user I can. 7
2.2 As an App Developer I can. 7
2.3 As a Open Data Hub Core Hacker I can. 8
2.4 Bug reporting and feature requests . 8

3 List of HOWTOs 11
3.1 HOWTO access e-Charging Stations Data . 11
3.2 HOWTO access Tourism Data . 13
3.3 HOWTO use the Open Data Hub’s Tourism Data Browser . 17
3.4 Quick and (not-so) Dirty Tips for Tourism . 18
3.5 How to use authentication . 22
3.6 How to setup your local Development Environment . 25
3.7 How to Sett Up Postman (API Development Environment) . 27
3.8 How to insert and modify NOI Events . 32

4 Apps built from Open Data Hub datasets 37
4.1 Alpha Stage Apps . 37
4.2 Beta Stage Apps . 38
4.3 Production Stage . 38

5 Frequently Asked Questions 39

6 Appendices 41
6.1 Datasets . 41
6.2 Resources for Developers . 51
6.3 Glossary . 71
6.4 Licenses and TOS for the Open Data Hub material . 72

i

ii

CHAPTER 1

Introduction

This is the website of the Open Data Hub documentation, a collection of technical resources about the Open Data Hub
project. The website serves as the main resource portal for everyone interested in accessing the data or deploying apps
based on datasets & APIs provided by the Open Data Hub team.

The technical stuff is composed of:

• Catalogue of available datasets.

• How-tos, FAQs, and various tips and tricks for users.

• Links to the full API documentation.

• Resources for developers.

For non-technical information about the Open Data Hub project, please point your browser to https://opendatahub.bz.
it/.

1.1 Project Overview

The Open Data Hub project envisions the development and set up of a portal whose primary purpose is to offer a single
access point to all (Open) Data from the region of South Tyrol, Italy, that are relevant for the economy sector and its
actors. This will also allow everybody to utilise these data in all digital communication channels and build application
on top of the data offered, be them either a POC (Proof of Concept) to explore new means or new field in which to use
Open Data Hub data, or novel and innovative services or software products built on top of the data.

All the data within the Open Data Hub will be easily accessible, preferring open interfaces and APIs which are built on
existing standards like The Open Travel Alliance (OTA), The General Transit Feed Specification (GTFS), Alpinebits.

The Open Data Hub team also strives to keep all data regularly updated, and use standard exchange formats for them
like Json and the Data Catalog Vocabulary (DCAT).

Depending on the development of the project and the interest of users, more standards and data formats might be
supported in the future.

1

https://opendatahub.bz.it/
https://opendatahub.bz.it/
https://opentravel.org/
https://gtfs.org/
https://www.alpinebits.org/
http://www.json.org/
https://www.w3.org/TR/vocab-dcat/

OpenDataHub Docs Documentation, Release 1.0

Figure 1.1: An overview of the Open Data Hub Project.

1.1.1 Open Data Hub Architecture

The architecture of the Open Data Hub is depicted in Figure 1.2, which shows its composing elements together with
its main goal: To gather data from Data Sources and make them available to Data Consumers, which are usually
third-party applications that use those data in any way that they deem useful, including (but not limited to) study the
evolution of historical data, or carry out data analysis to produce statistical graphics.

At the core of the Open Data Hub lays the Big Data Platform, a java application which contains all the business
logic and handles all the connections with the underling database using the DAL (Data Access Layer). The Big Data
Platform is composed by different modules: A Writer, that receives data from the Data Sources and stores them in
the Database using the DAL.

Communication with the Data Sources is guaranteed by the Data Collectors, which are Java applications built on top
of the dc-interface that use a DTO (Data Transfer Object) for each different source to correctly import the data.
Dual to the dc-interface, the ws-interface allows the export of DTOs to web services, that expose them to
Data Consumers.

The bottom part of Figure 1.2 shows the data format used in the various steps of the data flow.

Records in the Data Sources can be stored in any format and are converted into JSON as DTOs. They are then
transmitted to the Writer, who converts them and stores them in the Database using SQL. To expose data, the Reader
queries the DB using SQL, transforms them in JSON’s DTOs to the Web Services who serve the JSON to the Data
Consumers.

1.1.2 The Elements of the Big Data Platform in Details

As Figure 1.2 shows, the Big Data Platform is composed by a number of elements, described in the remainder of this
section in the same order as they appear in the picture.

2 Chapter 1. Introduction

OpenDataHub Docs Documentation, Release 1.0

Figure 1.2: The Open Data Hub architecture with the components (top) and the data format used (bottom) during the
data transformation.

Data Source A Data Source is the origin of one ore more datasets, which usually belongs to a single domain. Data
are usually automatically picked up by sensors and stored in some format, like for example CSV.

Dataset A dataset is a collection of records that originate from the same Data Source. Within the Open Data Hub, a
same Data Source may provide more datasets, that include slight different data, but there is at least one dataset
per domain. The underlying data format of a dataset never changes.

Data Collectors Data collectors are a library of Java classes used to transform data coming from Data Sources into
a format that can be understood, used, and stored by the Big Data Platform. As a rule of thumb, each Data
Collector is used for one Data Source or dataset and use DTOs to transfer them to the Big Data Platform. They
are usually created by extending the dc-interface in the bpd-core repository.

DTO The Data Transfer Object are used to translate the data format from the various formats used by the Data
Sources, to be read from the writer and to be exposed by the reader (see below). DTOs are written in JSON.
and are composed of three Entities: Station, Data Type, and Record.

Writer With the Writer, we enter in the core of the Big Data Platform. Its purpose is to receive DTOs from the Data
Collectors and store them into the DB and therefore implements all methods to read the DTO’s JSON format
and to write to the database using SQL.

DAL The Data Abstraction Layer is used by both the Writer and the Reader to access the Database and exchange
DTOs and relies on Java Hibernate. It contains classes that map the content of a DTO to corresponding database
tables.

Database (DB) The database represents the persistence layer and contains all the data sent by the Writer. Its config-
uration requires that two users be defined, one with full permissions granted -used by the writer, and one with
read-only permissions, used bye the Reader.

Reader The reader is the last component of the Core. It uses the DAL to retrieve DTOs from the DB and to transmit
them to the web services.

Web Services The Web Services, which extend the ws-interface in the bdp-core repository, receive data from

1.1. Project Overview 3

OpenDataHub Docs Documentation, Release 1.0

the Reader and make them available to Data Consumers by exposing APIs and REST endpoints. They transform
the DTO they get into JSON.

Data Consumers Data consumers are (web-)applications that use the JSON produced by web services and manipu-
lates them to produce a useful output for the final user.

Also part of the architecture, but not pictured in the diagram, is the persistence.xml file, which contains the
credentials and postgres configuration used by both the Reader and Writer.

1.1.3 Available Domains and APIs

The domains intended as sources for data served by the Open Data Hub are depicted in Figure 1.1.

The API of a software contains the definition of methods and of their signatures, that can be invoked to retrieve data
from the web services provided by the software itself. The signature of each method defines how to invoke the method
(i.e., the name of the method), which parameters should be supplied (i.e., their names and types, if they are mandatory
or not, and what the method returns (i.e., the type and format of the output produced by the method. By using an API,
it is possible to receive data from the web service and process them.

Currently, the following APIs are available from the Open Data Hub:

1. Mobility APIs

2. SASAbus APIs

3. Tourism APIs.

The first and second APIs provide datasets that belong to the Mobility Domain, while the third one to datasets in the
Tourism Domain.

The Mobility APIs allow to access real-time data of the datasets concerning the e-mobility, including data about
e-charging stations, availability of plugs to recharge e-cars, and so on.

The SASAbus APIs are part of the Mobility domain and allow to access various type of data about buses and station.

The Tourism API allows to access locations (of hotels, museums, events, and so on), points of interests, and a number
of other information about the tourism in South Tyrol.

Authentication

Note: The authentication layer is currently intended for internal use only.

Authentication in Open Data Hub is mainly used in the part of the Big Data Platform which exposes data to the
consumer, which means by the Reader and in every single webservice accessing the Reader, to allow the access to
closed data in each dataset only to those who are allowed to.

There are currently two different authentication methods available:

• The Token-based Authentication, defined in RFC 6750, requires that anyone who wants to access resources
supply a valid username and password and becomes a Bearer Token that must be used to access the data. After
the token expires, a new one must be obtained. This type of authentication is used for the datasets in the tourism
domain.

• The OAuth2 Authentication follows the RFC 6749 and is used for all the datasets in the mobility domain.

The OAuth2 authentication mechanism Authentication tokens are based on JSON Web Token (JWT) as defined in RFC
7519#section-3, to send claims.

For those not familiar with the OAuth2 mechanism, here is a quick description of the client-server interaction:

4 Chapter 1. Introduction

https://tools.ietf.org/html/rfc6750.html
https://tools.ietf.org/html/rfc6749.html
https://tools.ietf.org/html/rfc7519.html#section-3
https://tools.ietf.org/html/rfc7519.html#section-3

OpenDataHub Docs Documentation, Release 1.0

1. The client requests the permission to access restricted resources to the authorisation server.

2. The authorisation server replies with a refresh token and an access token. The access token contains an expire
date.

3. The access token can now be used to access protected resources on the resource server. To be able to use the
access token, add it as a Bearer token in the Authorization header of the HTTP call. Bearer is a means to use
tokens in HTTP transactions. The complete specification can be found in RFC 6750.

4. If the access token has expired, you’ll get a HTTP 401 Unauthorized response. In this case you need
to request a new access-token, passing your refresh token in the Authorization header as Bearer token. As an
example, in Open Data Hub datasets Bearer tokens can be inserted in a curl call like follows:

curl -X GET "$HTTP_URL_WITH_GET_PARAMETERS" -H "accept: */*" -H "Authorization:
→˓Bearer $TOKEN"

Here, $HTTP_URL_WITH_GET_PARAMETERS is the URL containing the API call and “$TOKEN” is the string
of the token.

1.1.4 Available Datasets

The list of available datasets has been moved to a dedicated page.

1.1. Project Overview 5

https://tools.ietf.org/html/rfc6750.html

OpenDataHub Docs Documentation, Release 1.0

6 Chapter 1. Introduction

CHAPTER 2

How To Contribute

There are different possibilities to participate in the Open Data Hub Project, including -but not limited to- to report
bugs in the API or errors in the API output, to ask for more datasets to be added to our repository, to make feature
requests or suggestions for improvement.

Depending on your interest on the Open Data Hub Project, we welcome your participation to the project in one of the
roles that we have envisioned: User, App developer, Core Hacker.

You can also help the Open Data Hub project grow and improve by reporting bugs or asking new features.

2.1 As a user I can. . .

. . . install and use an app built on top of the API. Browse the list of available applications developed by third-
parties, choose one that you are interested in, install it and try it out, then send feedback to their developers
if you feel something is wrong or missing.

While we plan to keep an up-to-date list of those applications, as of May 20, 2019, no such application that we
are aware of has been released.

. . . explore the data in the datasets. Choose a dataset from the list of Datasets and start gathering data from it, by
using the documentation provided in this site. You can then provide any kind of feedback on the dataset: reports
about any malfunctions, suggestions for improvements or new features, and so on.

Moreover, if you are interested in datasets that are not yet in our collection, get in touch with the Open Data
Hub team to discuss your request.

No software installation is needed: Go to the list of apps (not yet available) or the list of datasets and start from there.

2.2 As an App Developer I can. . .

. . . harvest data exposed by the dataset. Browse the list of Datasets to see what types of data are contained in the
datasets, and think how they can be used.

7

OpenDataHub Docs Documentation, Release 1.0

For this purpose, we maintain an updated list of the available datasets with links to the API to access them.

. . . build an application with the data. Write code for an app that combines the data you can harvest from the avail-
able datasets in various, novel way.

To reach this goal, you need to access the APIs, their documentation, and the datasets. It is then your task to
discover how you can reuse the data in your code.

. . . publish my app in Open Data Hub. As soon as you have developed a stable version of your app, get in touch
with us: We plan to maintain an updated list of apps based on our dataset included with this documentation.

No software installation is needed: Go to the list of apps (not yet available, be the first!) or API documentation/datasets
and start from there, and develop in a language of your choice an application that uses our data.

2.3 As a Open Data Hub Core Hacker I can. . .

. . . help shape the future of Open Data Hub. Participate in the development of Open Data Hub: Build new data
collectors, extend the functionality of the broker, integrate new datasets on the existing infrastructure, develop
new stable API versions.

To be able to become a core hacker, however, requires a few additional tasks to be carried out:

1. Learn how to successfully integrate your code with the existing code-base and how to interact with the Open
Data Hub team.

In other words, you need to read and accept the Guidelines for Developers, summarised there and available in
two separate parts: Platform Guidelines - Full Version and Database Guidelines - Full Version.

2. Understand the architecture of both the Open Data Hub and Big Data Platform.

3. Learn about the Development, Testing, and Production Environments.

4. Install the necessary software on your local workstation (be it a physical workstation, a virtual machine, or a
Docker instance), including PostgreSQL with postgis extension, JDK, git.

5. Set up all the services needed (database, application server, and so on).

6. Clone our git repositories.

To successfully complete these tasks, please read the How to setup your local Development Environment tutorial,
which guides you stepwise through all the required set up and configuration, along with some troubleshooting
advice.

7. Coding.

That’s the funniest part, enjoy!

To support the installation tasks and ease the set up of your workstation, we are developing a script the you will do the
job for you. Stay tuned for updates.

2.4 Bug reporting and feature requests

This section explains what to do in case you:

1. have found an error or a bug in the APIs;

2. like to suggest or require some enhancement for the APIs;

3. have some requests about the datasets

4. find typos or any error in this documentation repository;

8 Chapter 2. How To Contribute

OpenDataHub Docs Documentation, Release 1.0

5. have an idea for some specific tutorial.

If your feedback is related to the Open Data Hub Core, including technical bugs or suggestions as well as requests
about datasets (i.e. points 1. to 3. above), please insert your issues on the following website:

https://github.com/idm-suedtirol/bdp-core/issues

If your feedback is related to the Open Data Hub Documentation, please insert your issue on the following website,
using the template that suits your needs:

4. https://github.com/idm-suedtirol/odh-docs/issues/new?template=bug_report.md

5. https://github.com/idm-suedtirol/odh-docs/issues/new?template=feedback.md

Note: You need to have a valid github account to report issues and interact with the Open Data Hub team.

We keep track of your reports in our bug trackers, where you can also follow progress and comments of the Open Data
Hub team members.

2.4. Bug reporting and feature requests 9

https://github.com/idm-suedtirol/bdp-core/issues
https://github.com/idm-suedtirol/odh-docs/issues/new?template=bug_report.md
https://github.com/idm-suedtirol/odh-docs/issues/new?template=feedback.md

OpenDataHub Docs Documentation, Release 1.0

10 Chapter 2. How To Contribute

CHAPTER 3

List of HOWTOs

This page contains the list of available howtos, divided into areas. The following howtos are available; while further
below the list, some information about each of them is provided.

3.1 HOWTO access e-Charging Stations Data

This howto uses the E-charging stations dataset to showcase a few basic API calls, whose output will be needed in
most complex calls.

3.1.1 Dataset Information

This datasets exposes data about the existing e-charging stations in South Tyrol and their status, including historical
data and usage.

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/EchargingFrontEnd

3.1.2 Invoking the API

The available methods in this API are very generic, so some post-processing of the JSON that you receive as output
will probably be necessary.

The API calls shown here can be used with other datasets of the mobility domain.

You can find all the API’s defined methods and documentation at the URL http://ipchannels.integreen-life.bz.it/
EchargingFrontEnd.

11

https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/EchargingFrontEnd
http://ipchannels.integreen-life.bz.it/EchargingFrontEnd
http://ipchannels.integreen-life.bz.it/EchargingFrontEnd

OpenDataHub Docs Documentation, Release 1.0

The two most basic REST calls are carried out by the methods get-stations and get-station-details.

get-stations

The get-stations method requires no parameters and retrieves all the IDs of the charging stations that are part of
this dataset.

There are two possibilities to retrieve the data with the API call:

1. By HTTP request:

http://ipchannels.integreen-life.bz.it/emobility/rest/get-stations

2. Using a command line with a tool like curl or wget:

curl -X GET --header 'Accept: application/json' 'http://ipchannels.
integreen-life.bz.it/emobility/rest/get-stations'

The result structure is a json list of strings, and an actual outcome is (shortened for the sake of clarity):

[
"IT*220*EBZ000034",
"82",
"DW_000006",
"DW_000009",
"IT*220*ETN020016",
"83",
"84",
"DW_000013",
"DW_000019",
"85",

]

Each of the IDs can then be used in other methods to obtain more detailed information about the station.

get-station-details

The get-station-details method requires no parameters and retrieves all the known information for each
charging station in the dataset. Like the previous method, two method can be used for the call:

1. By HTTP request:

http://ipchannels.integreen-life.bz.it/emobility/rest/get-station-details

2. Using a command line with a tool like curl or wget:

curl -X GET --header 'Accept: application/json' 'http://ipchannels.
integreen-life.bz.it/emobility/rest/get-station-details'

The result structure is a json list of strings, and an actual outcome is (shortened for the sake of clarity):

{
"_t": "it.bz.idm.bdp.dto.emobility.EchargingStationDto",
"id": "ASM_00000103",
"name": "BRIXEN_02",
"latitude": 46.706333,
"longitude": 11.651225,
"municipality": "Brixen - Bressanone",
"capacity": 2,

(continues on next page)

12 Chapter 3. List of HOWTOs

http://ipchannels.integreen-life.bz.it/emobility/rest/get-stations
http://ipchannels.integreen-life.bz.it/emobility/rest/get-stations
http://ipchannels.integreen-life.bz.it/emobility/rest/get-stations
http://ipchannels.integreen-life.bz.it/emobility/rest/get-station-details
http://ipchannels.integreen-life.bz.it/emobility/rest/get-station-details
http://ipchannels.integreen-life.bz.it/emobility/rest/get-station-details

OpenDataHub Docs Documentation, Release 1.0

(continued from previous page)

"provider": "Alperia Smart Mobility",
"city": "BRESSANONE - BRIXEN",
"state": "ACTIVE",
"paymentInfo": "https://www.alperiaenergy.eu/smart-mobility/punti-di-ricarica.html",
"accessType": "PUBLIC",
"address": "CLUB MAX - Fischzuchtweg - Via del Laghetto"

},
{

"_t": "it.bz.idm.bdp.dto.emobility.EchargingStationDto",
"id": "DW-000027",
"name": "San Vigilio Hotel Sport",
"latitude": 46.698061,
"longitude": 11.934766,
"municipality": "Marèo - Enneberg - Marebbe",
"capacity": 1,
"provider": "DriWe",
"city": "San Vigilio (Marebbe)",
"state": "ACTIVE",
"paymentInfo": "http://www.driwe.eu",
"accessInfo": "24h",
"accessType": "PRIVATE_WITHPUBLICACCESS",
"categories": [

"EAT&CHARGE",
"SLEEP&CHARGE"

],
"address": "Strada al Plan Dessora",
"reservable": true

},

As you see from the example, many of the e-charging station’s metadata is shared by all of them including the (unique)
ID, name, location (town or city, address, geographic coordinates), access to it. There are however additional metadata
that are optional (like the station’s category and if it is reservable.

3.1.3 Troubleshooting

If the API call fails, one of the following response code is returned - they correspond to HTTP status codes :

401 Unauthorised The request is valid, but authentication is required and you provided none. This should never
happen, you should receive an empty output set if you require data that are not publicly available.

403 Forbidden The request is valid but could not be completed on the server side.

404 Not found There is an syntax error in the call you made or the page is not available at this moment.

500 Internal Server Error Oh, well. Apparently we have a problem now. . .

3.2 HOWTO access Tourism Data

Note: Information in this page might change in the next future.

The purpose of this howto is to quickly introduce the structure of the API calls, the available filters for the datasets in
the Tourism domain, and give some general and useful information about the Tourism API.

3.2. HOWTO access Tourism Data 13

OpenDataHub Docs Documentation, Release 1.0

3.2.1 Structure of the API calls

In the Tourism domain, there are a few API calls that allow to extract the same type of data from the various datasets.
Each of these calls can prove useful in different scenarios, depending on the data returned and is described in this
section, in which the following conventions are used:

• {Name} is the (case sensitive!) name of the dataset you are currently working with, like for example
Accomodation.

• {Id} is the unique identifier of an array within the dataset, i.e., an item of the dataset. It is usually the first key
of the resulting JSON output of a query.

The calls defined for every datasets are:

• /api/{Name} Return the whole dataset.

• /api/{Name}/{Id} Return only item with given {Id}.

• /api/{Name}Localized Return the whole dataset in only the given language (which is a mandatory part
of the query).

• /api/{Name}Localized/{Id} Return only item with given Id an in given language.

• /api/{Name}Reduced Return only the list of Ids and respective name of the items in the dataset. It is useful
to create lists of items or just to have an overview of the dataset’s items.

• /api/{Name}Changed Return all items that have changed since date YYYY-MM-DD

• /api/{Name}Types Returns all types of data present in the dataset, that can be later used to ask more precise
queries to the dataset.

3.2.2 Filters common to all datasets

Filters are used within a dataset and their primary purpose is to limit the result set according to specific parameters.
They might not be available in every API call. information about default values can be found for each datasets in the
swagger interface of the API. Some examples of their use can be found in section Quick and (not-so) Dirty Tips for
Tourism.

Note: This section is Work in Progress and might be expanded.

• Seed is used to set pagination. See tip TT3.

• Locfilter is a composed parameters that uniquely identifies a location within South Tyrol. See example EX2 for
a detailed example.

• Latitude and Longitude are used to identify the (absolute) positioning of a location, point of interest, event, or
any other type of object. They must be entered in decimal form

• Radius it is the distance in meter prom a geographical point. It can be used together with latitude and longitude
to broaden the search for an object. The results are automatically geosorted, that is, they are listed from the
nearest to the most far away from the selected point. The distance is calculated as the crow flies.

• IdFilter allows to extract from the dataset only the items with the given IDs, separated with a ,.

• Active and OdhActive. Filters with the same name, with one prefixed by Odh refer to the same parameter. The
difference is however important: Active indicates that the item is present in the original dataset provided, while
OdhActive shows that the item has been verified by the Open Data Hub team and is present in the Open Data
Hub. See discussion in tip TT2.

14 Chapter 3. List of HOWTOs

http::/tourism.opendatahub.bz.it/swagger

OpenDataHub Docs Documentation, Release 1.0

• ODHTag allows to filter a result set according to tag defined by the Open Data Hub team. These tags are mostly
related with places to see, activities that can be carried out in winter or summer, food and beverage, cultural
events and so on

3.2.3 Filters specific of a datasets

Note: This section will be available soon.

3.2.4 Types of input data

Note: This section is Work in Progress and will be expanded with additional types of input data.

Since calls in the tourism domain are quite generic and revolve around a few common calls (see section Structure of
the API calls), we showed a couple of filters that can be used to reduce the result set and make the query more precise.
Depending on the type of filter, a different type of data must be entered to have a successful result, otherwise the filter
will not match. In this section we show the most common types of data that should be provided, besides the common
strings, dates, and integers.

Bitmask value A Bitmasks value is a kind of shorthand that can be entered in a filter to obtain results for different
types of that filter’s accepted values. Each of the accepted values has a code that is a power of two (1, 2, 4,
8, and so on), hence each sum of different codes produces a unique number. The advantage is that, instead of
entering multiple strings that should be matched, you simply need to enter a number as a filter, that is the sum
of the values’ corresponding codes. See Example 3.

Lists A list is an (unordered) sequence of items. The available values are usually listed on the right-hand side of the
filter, along with the separator, which is a comma (,). In a few cases, in which more lists are accepted as filter.

Compound values Compound values refer to those values that need a prefix before the type of value. See for example
Example2 for a deeper explanation and Example 1 for a sample query that fails because a wrong compound value
was supplied.

Language The descriptions of items in the dataset appear in three languages: Italian, German, and English. To
retrieve values only in one language, enter it, de, or en, respectively.

3.2.5 Data Access and Manipulation

All the APIs available for the tourism domain can be accessed from the same URL through their swagger interface:
http::/tourism.opendatahub.bz.it/swagger

For most of the Tourism domain datasets you need credentials to access the data. Go to the abovementioned URL and
click on Expand Operations on the far right-hand side of Login (Get Bearer Token). In the panel that opens (see
Figure 3.1), fill in the username and password with your credentials.

Note: The Bearer Token Login method replaces the previous one, LoginAPI, which is not available anymore.

Click on Try it out to generate a new access token that will be needed for any further request (see Figure 3.2).

After you have clicked on the button, the panel will expand and present some more data, the most important are the
Curl and Response Body sections. In the first one, you can see the POST call sent from the API in curl format: you
can use its content to write scripts that fetch data and automatise data fetching.

3.2. HOWTO access Tourism Data 15

http::/tourism.opendatahub.bz.it/swagger

OpenDataHub Docs Documentation, Release 1.0

Figure 3.1: Login mask of the Tourism API.

Figure 3.2: Token assigned to the user.

16 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

The Response Body section contains the answer to the call and is a JSON-formatted string that contains a few data,
the most important of which are:

• The access_token, needed for any access to the data

• The expires_in, the validity in seconds of the access token before its expiration.

To avoid writing every time the token in the API methods, copy and paste only the token without quotes from the
response body into the textfield on the right-hand side textfield on top of the page (see Figure 3.3), then click on
Explore to store the token and cache it for all the next queries.

Figure 3.3: Caching the received token into the tourism’ swagger interface.

Using Command Line Tools

If you plan to access the API methods with command line tools like curl or wget, or only from scripts, you need to
add an authentication header to each call. For example, using curl:

curl -X GET --header 'Accept: application/json' --header \
'Authorization: Bearer vLwemAqrLKVKXsvgvEQgtkeanbMq7Xcs' \
'http://tourism.opendatahub.bz.it/api/Gastronomy'

Note: The string of the token is shortened for the sake of clarity.

It is important to mention that the authorisation header reaquires the following syntax: Authorization: Bearer, fol-
lowed by the whole string of the token.

One you have retrieved the data, which come in JSON format, you can process and manipulate them with a tool like
jq.

See also:

More detailed documentation of the exposed API methods can be found on http://tourism.opendatahub.bz.it/Help.

3.3 HOWTO use the Open Data Hub’s Tourism Data Browser

This how to explains the necessary steps to access and retrieve data from the Open Data Hub’s tourism domain.

3.3.1 Data Browsing and Exploring

In order to access the data in the tourism domain, launch a browser and point it to http://tourism.opendatahub.bz.it/.
On the right-hand side of the page, you can see a box that shows the permissions to access data that you have as a
(non-logged in) user, while the remainder of the page provides an overview of the various component of the project
and its architecture.

If you try to access the ODH Data item in the top menu, you will see that it is empty. In order to access data, you
need to click on the Login button on the top right corner of the page.

Write the username (email address) and password that was provided to you and click on the Log in. You will be
redirected to the home page as a logged in user and from here, you will see the box with the permissions you have to
access the various types of data.

3.3. HOWTO use the Open Data Hub’s Tourism Data Browser 17

https://github.com/stedolan/jq
http://tourism.opendatahub.bz.it/Help
http://tourism.opendatahub.bz.it/

OpenDataHub Docs Documentation, Release 1.0

Figure 3.4: Logging in to the CMS portal.

If you now try to access the ODH Data item in the top menu, you will be able to select some dataset. As an example,
Figure 3.5 shows what is available in the ODH Data → Activities & Pois → Winter filter - in this case a list of activities
that can be done during the winter on the snow.

The page allows to further filter the results, by using search strings and/or the list of tags underneath, to move between
pages of results, and to change language of the interface (although at the moment the page is not fully translated in all
languages!)

If you click on one of the images in the list will pop up an overlay with more detailed information about that activity.

3.4 Quick and (not-so) Dirty Tips for Tourism

This section contains various tips and tricks to improve and tweak the queries sent to the Tourism datasets, allowing
more precise results to be retrieved. This page is divided into two parts: The first one shows examples with code
(usually the API call), the second is organised like a FAQ section.

3.4.1 Example Calls

EX1. Why does this query return no result?

http://tourism.opendatahub.bz.it/api/Gastronomy?pagesize=3&categorycodefilter=0&
→˓locfilter=reg268

Because there is no value reg268 for locfilter. You can return valid IDs to be used as locfilter using this call:

http://tourism.opendatahub.bz.it/api/RegionReduced?language=it

An example result for this call is:

{
"Id": "D2633A26C24E11D18F1B006097B8970B",

(continues on next page)

18 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

Figure 3.5: Accessing the data through filters or menu item.

Figure 3.6: Detailed view of a POI (Point Of Interest).

3.4. Quick and (not-so) Dirty Tips for Tourism 19

OpenDataHub Docs Documentation, Release 1.0

(continued from previous page)

"Name": "Alta Badia"
},

Therefore, use the ID regD2633A26C24E11D18F1B006097B8970B in locfilter to search for Gastronomy in the Alta
Badia region.

EX2. The locfilter parameter.

Q: How do I correctly use the locfilter parameter?

locfilter =>
Locfilter (Separator ',' possible values: reg + REGIONID = (Filter by
Region), reg + REGIONID = (Filter by Region), tvs + TOURISMVEREINID =
(Filter by Tourismverein), mun + MUNICIPALITYID = (Filter by
Municipality), fra + FRACTIONID = (Filter by Fraction)),
(default:'null')

It seems to accept a string, but how is this string built?

A: locfilter accepts a string composed as follows: a region identifier, followed immediately by a location Identifier.

Location identifier are the following four:

• reg: Region (Italian Regione)

• tvs: Turistic association (German Tourismusverein)

• mun: Municipality, i.e., town or city (Italian Municipalità)

• fra: Suburb or district (Italian frazione)

IDs for each location can be gathered either from the swagger interface or using an API calls:

• reg:

http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_
→˓GetRegionsReduced
http://tourism.opendatahub.bz.it/api/RegionReduced?language=it

• tvs:

http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_
→˓GetTourismvereinReduced
http://tourism.opendatahub.bz.it/api/TourismAssociationReduced?
→˓language=iturismusverein)

• mun:

http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_
→˓GetMunicipalityReduced
http://tourism.opendatahub.bz.it/api/MunicipalityReduced?language=it

• fra:

http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_
→˓GetDistrictReduced
http://tourism.opendatahub.bz.it/api/DistrictReduced?language=it

20 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

For example, to retrieve all Gastronomy in the suburb of Lana, first retrieve its ID, which is:

{
"Id": "79CBD79551C911D18F1400A02427D15E",
"Name": "Lana"

},

Then pass the string fra79CBD79551C911D18F1400A02427D15E as locfilter:

http://tourism.opendatahub.bz.it/api/Gastronomy?
→˓locfilter=fra79CBD79551C911D18F1400A02427D15E

EX3. The categorycodefilter parameter.

Q: categorycodefilter seems similar to the locfilter parameter found in this trick, but this does not accept string?

Category Code Filter (BITMASK values: 1 = (Restaurant), 2 = (Bar /
Café / Bistro), 4 = (Pub / Disco), 8 = (Apres Ski), 16 =
(Jausenstation), 32 = (Pizzeria), 64 = (Bäuerlicher Schankbetrieb),
128 = (Buschenschank), 256 = (Hofschank), 512 = (Törggele Lokale),
1024 = (Schnellimbiss), 2048 = (Mensa), 4096 = (Vinothek /Weinhaus /
Taverne), 8192 = (Eisdiele), 16348 = (Gasthaus), 32768 = (Gasthof),
65536 = (Braugarten), 131072 = (Schutzhütte), 262144 = (Alm), 524288 =
(Skihütte)

The categorycodefilter parameter accepts integers instead of strings, in bitmask-value. The code of each category
is a power of 2, so to search in multiple categories, simply add the respective codes and pass them as value of the
parameter. For example, to search for Restaurants (1) and Pizzerias (32), pass 33 to categorycodefilter:

http://tourism.opendatahub.bz.it/api/Gastronomy?categorycodefilter=33

3.4.2 Tips and Tricks

TT1. Categorycodefilter in the Accomodation dataset.

Q: In the Accommodation dataset there’s no categorycodefilter filter, like in the Gastronomy dataset. Is there some
equivalent filter?

A: In the Accommodations dataset use categoryfilter instead.

TT2. odhactive and filters starting with odh.

Q: What is the purpose of the odhactive filter? And what do all the filters prefixed with odh stand for?

A: In the datasets, there are filters like active and odhactive, where odh simply stands for Open Data Hub. Filters
starting with odh are collectively called odhtags.

Datasets filtered with the former return all data sent by the dataset provider, while the latter returns those validated by
the Open Data Hub team as well. This parameter is useful in a number of use cases. Suppose that the Open Data Hub
team receives a dataset contains name and location of ski lifts within South Tyrol’s ski areas. If the dataset has not
been updated in a few years, some entry in that dataset might be non valid anymore, for example a ski lift has been

3.4. Quick and (not-so) Dirty Tips for Tourism 21

OpenDataHub Docs Documentation, Release 1.0

replaced by a cable car or has been dismantled. If this case has been verified by the Open Data Hub team, the entry
referring to that ski lift will not appear in the Open Data Hub.

TT3. The seed filter

Q: What is the seed filter used for?

A: seed is used in pagination, i.e., when there are two or more pages of results, to keep the sorting across all pages.
When retrieving a high number of items in a dataset it is desirable to have only a limited amount of results in each
page.

It is possible to activate seed in two ways: in the dataset, choose a pagenumber (the number of the result page that will
be shown first) or a pagesize (number of items in each page, we’ll use 15 in this example) and set seed to 0. At the
beginning of query’s Response Body you will see something like:

{
"TotalResults": 10564,
"TotalPages": 705,
"CurrentPage": 1,
"OnlineResults": -1,
"Seed": "43",
"Items": [

{

The remainder of the Response Body contains the first 15 sorted items. If you now want to retrieve page 2, page 56,
or any other, use 43 as seed and write 2, 56, or the desired value as pagenumber.

If you do not enter the seed, you could find an item that was already shown before, because the API can not guarantee
that the same sorting is used in different queries.

3.5 How to use authentication

As described in section Authentication, there are two methods to access protected data in the dataset: Bearer Token
Login and OAuth2 authentication. Both authentication methods can be used within a browser or from the command
line, with only slight differences. In this section we show how to use authentication within the Open Data Hub,
provided that you owe an username and a password to access the closed data in the datasets.

To obtain the credentials, please address your enquiry to the contact email of the dataset you would like to access.

3.5.1 Bearer Token Login

Bearer token login is used to access the Datasets in the Tourism Domain; description of the procedure is available at
Data Access and Manipulation.

3.5.2 OAuth2 authentication

OAuth2 authentication can be used in all the Datasets in the Mobility Domain that are marked with the

badge, so pick one dataset and go to its swagger interface, whose URL is provided together
with the information of the dataset.

22 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

Note: As of May 20, 2019, authentication is not yet publicly available, so the following guidelines can not yet be put
in practice.

If you use a browser

Make sure you have obtained a valid username and password, then open the /rest/refresh-token method and
write you username and password in the two user and pw fields, respectively, as shown in Figure 3.7.

Figure 3.7: Request a new OAuth2 token.

If your credentials are valid, you will receive a new token, otherwise the response will be a 401 Unauthorized error
message.

The token you received can be used in any of the API’s methods that require authorisation. A sample call is shown in
figure Figure 3.8. Note the syntax of the Autorization parameter: You must use prefix the authentication token
with the Bearer string, followed by an empty space, then by the token.

In case you do not respect the Authorization+space+token sequence, use additional separators in the sequence (like
Figure 3.9 shows), or use an invalid token, you will receive an 401 - Unauthorized HTTP response.

If you use the Command Line Interface.

Open a shell on your workstation and use a tool like curl or wget, with the appropriate options:

-X
Specify the request method (GET)

--header, -H
Add extra header information to be included in the request.

3.5. How to use authentication 23

OpenDataHub Docs Documentation, Release 1.0

Figure 3.8: A successful call to a method requiring authentication.

Figure 3.9: A failed call to a method requiring authentication.

24 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

Note that the --header option is used twice: The first to receive the answer in text/html format, the second to
provide the credentials required to access protected content.

API calls can be done using a tool like curl or wget, with the same -X and --header option used twice: The first
to require the format of the response, the second to provide the credentials, like for example:

curl -X GET "http://bdp-test-env.b7twwguhyj.example.com/emobility/rest/get-records?
→˓station=83&name=CP1-Tignale&seconds=50" --header "Accept: */*" --header
→˓'Authorization: Bearer <token>'

Make sure to replace the <token> with the actual token you received.

3.6 How to setup your local Development Environment

This tutorial will guide you in the setup of the local infrastructure to be able to deploy, on top of the Big Data Platform,
a new Data Collector Object starting from a simple HelloWorld template we provide.

This tutorial is divided into three parts:

1. Software installation

2. Services configuration

3. Troubleshooting

Warning: This tutorial is still work in progress and is largely incomplete!

3.6.1 Software Installation

The following installation directions have been verified on a VM with installed either Debian 9 or Ubuntu 18.04.01
LTS. The applications installed on it are the Suggested version.

Note: All the commands and configuration items (including their location in the filesystem) refer to this distribution
and should be identical or quite similar on all other debian-based distributions as well.

On other Linux distribution some the name of the single packages might vary.

You need to install the following software:

Software Mini-
mum

Sug-
gested

Notes

Post-
greSQL

9.6 10.5

postgis
ext.

2.2 2.4

Java JRE7 JRE8 Most of the packages require Java 8 to be built.
git 2.17 2.17
xmlstarlet 1.6.1 1.6.1
Apache
Maven

3.3.9 3.5.2 Optional. If you don’t use it, do not install it.

tomcat8 8.0 8.5 You Optional can either use the tomcat server provided by Open Data Hub or
install another application server.

3.6. How to setup your local Development Environment 25

OpenDataHub Docs Documentation, Release 1.0

Note: In case you opt to not use Maven or Tomcat, remember to edit the script in order to not attempt to configure
them!

On a typical debian-based Linux distribution, installing the software is achieved by opening a shell/terminal, then
issuing the following command, provided you have the rights to install software:

odh@bdp:~$ sudo apt-get install git openjdk-8-jdk postgresql postgis maven tomcat8
→˓xmlstarlet

This command ensures that all dependencies are installed as well. If you have none of these package already installed,
you might need to download up to ~125Mb of packages.

3.6.2 Services configuration

The services will be configured automatically, since we developed a script that does most of the job for you. However,
a few preliminary steps are required:

1. Make sure tomcat8 and postgres are running. If the do not or if you are unsure, refer to entry 1 in section
Troubleshooting.

2. Verify that tomcat and postgres are listening on the right port (8080 and 5432 respectively). See entry 2 in
section Troubleshooting for more information.

3. Make sure there is a database role configured with a password and a few access permission.

4. Set two environment variables.

5. Edit the script to suit your workstation.

6. Launch the script.

Warning: The script might silently fail on some machine, for example on Ubuntu 18.04, because it ships with
Java 11. In this case, please install also java 8 and make it the default java version.

3.6.3 Troubleshooting

1. How do I check if a service is running?

You can check that a service like tomcat or postgres is running from the CLI, by issuing the following command and
see an output similar to the one show here, where the active (running) string can be read.

odh@bdp:~$ service tomcat8 status
tomcat8.service - LSB: Start Tomcat.
Loaded: loaded (/etc/init.d/tomcat8; bad; vendor preset: enabled)
Active: active (running) since Wed 2018-06-13 16:36:28 CEST; 14min ago

Docs: man:systemd-sysv-generator(8)
CGroup: /system.slice/tomcat8.service

13828 /usr/lib/jvm/java-8-openjdk-amd64/bin/java -Djava.util.logging.
→˓config.file=/var/lib/tomcat8/conf/lo

Jun 13 16:36:23 bdp systemd[1]: Starting LSB: Start Tomcat....
Jun 13 16:36:23 bdp tomcat8[13802]: * Starting Tomcat servlet engine tomcat8
Jun 13 16:36:28 bdp tomcat8[13802]: ...done.
Jun 13 16:36:28 bdp systemd[1]: Started LSB: Start Tomcat..

26 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

If you do not use systemd, the command will have a differnt output:

odh@bdp:~$ service tomcat8 status
[ok] Tomcat servlet engine is running with pid 11357.

From a browser you should connect to http://localhost:8080/ (replace localhost this the URL or IP where your
application server is located) and see the following page:

Figure 3.10: The tomcat8 default landing page.

If tomcat is not running, start it using the following command, then entering your password.

odh@bdp:~$ sudo service tomcat8 start
[sudo] password for odh:

You can check again if tomcat is running with the command service tomcat8 status.

2. How do I check the port on which a service is listening?

You can use the netstat command line utility, like this:

root@bdp:~$ netstat -plnt4
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/
→˓Program name
tcp 0 0 0.0.0.0:5432 0.0.0.0:* LISTEN
→˓2427/postgresql
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 2719/
→˓sshd
tcp 0 0 127.0.0.1:8080 0.0.0.0:* LISTEN
→˓2863/tomcat8

Make sure that at least ports 8080 and 5432 are present (tomcat and postgres respectively) in the Local Address.

It is suggested to run this command as superuser, because otherwise not all information is present.

3.7 How to Sett Up Postman (API Development Environment)

Postman is a popular API development environment, that is, a tool that is used (among other useful features) to ease
the interaction with API calls to remote sites. In this tutorial, we show the few steps necessary to set Postman to
connect to the Open Data Hub datasets in both the mobility and tourism domains.

In the remainder of this tutorial, we will use as example the E-chargin station dataset, located at http://ipchannels.
integreen-life.bz.it/emobility/swagger-ui.html for the mobility domain and the Accommodation dataset, located at
http://tourism.opendatahub.bz.it/swagger/ui/index#/Accommodation.

3.7. How to Sett Up Postman (API Development Environment) 27

http://localhost:8080/
http://ipchannels.integreen-life.bz.it/emobility/swagger-ui.html
http://ipchannels.integreen-life.bz.it/emobility/swagger-ui.html
http://tourism.opendatahub.bz.it/swagger/ui/index#/Accommodation

OpenDataHub Docs Documentation, Release 1.0

3.7.1 Initial Setup

After Postman has been launched, click on the New button, then on Request to start the configuration of the Open Data
Hub endpoints, like shown in Figure 3.11.

Figure 3.11: Start of a new request creation.

In the dialog window that opens, write the URL of the endpoint in the Request name textfield and assign it in the ODH
collection, see Figure Figure 3.12.

Hint: If no collection has already been created, create one by clicking on + Create collection, then write ODH and
confirm.

Click on Save to ODH to start querying the endpoint.

Repeat the procedure for the Accommodation dataset and for any other dataset you want to query.

It is now possible to start querying the endpoints, by providing next to the GET button the corresponding call, like
shown in Figure 3.13 for the E-charging station dataset and in Figure 3.13 for the Accommodation dataset. However,
while the former images shows a set of results, on the latter appears the message Authorization has been denied for
this request. and the status 401 Unauthorized.

Figure 3.13: Querying the E-charging station endpoint. Figure 3.14: Querying the Accommodation endpoint.

28 Chapter 3. List of HOWTOs

OpenDataHub Docs Documentation, Release 1.0

Figure 3.12: Defining a new endpoint in the mobility domain.3.7. How to Sett Up Postman (API Development Environment) 29

OpenDataHub Docs Documentation, Release 1.0

The reason is that the data contained in that dataset have not (yet) been published as open data, therefore authentication
is necessary. This is where Postman proves useful, since it can request authentication tokens (OAuth2 in the case of
Open Data Hub), store them, and use them whenever the are needed.

3.7.2 Getting a new Authorisation Token

To request a new authorisation token, click on Authorization right below the GET request, then select OAuth 2.0 as
the Type.

Now, in the right-hand side of the window, write the URL that manages the tokens (for the tourism domain, this is
http://tourism.opendatahub.bz.it/token and click on the Get New Access Token button (Figure 3.15).

Figure 3.15: Requesting an access token.

In the dialog window that opens fill in all the necessary fields, like shown in Figure 3.16, selecting Password Cre-
dentials as the Grant Type, then click on Request Token. Make sure you have received the username and password to
obtain the token, and give it a name easy to remember.

If your credentials are correct and the request is successful, the dialog window will be replaced by another one con-
taining the access token and a few details about it, including its validity and expire date, see Figure 3.17 and Figure
3.18.

Figure 3.17: An access token. Figure 3.18: Information about an access token

It is now possible to select the token: Select Opendatahub Tourism from the Available Tokens drop-down menu (see
Figure 3.15), click on Body and repeat the GET request. You should be able to see now the data in the dataset, like
shown in Figure 3.19.

30 Chapter 3. List of HOWTOs

http://tourism.opendatahub.bz.it/token

OpenDataHub Docs Documentation, Release 1.0

Figure 3.16: A filled-in token request.

3.7. How to Sett Up Postman (API Development Environment) 31

OpenDataHub Docs Documentation, Release 1.0

Figure 3.19: Access to data requiring authorisation.

3.8 How to insert and modify NOI Events

After reading this article, you will be able to use the Open Data Hub tourism portal to insert, modify, and delete events
that take place at NOI Techpark in Bolzano (in the remainder, NOI events).

3.8.1 Preliminaries

Since you must login to create events, you need valid credentials to be able to add NOI events, that you should have
received from the Open Data Hub team.

Go to http://tourism.opendatahub.bz.it and click on Log in (top right corner)

Provide your credentials, then you will be redirected to your homepage, that shows among other information, the roles
you have within the Open Data Hub.

3.8.2 Creation of a new NOI Event

Once logged in, go to ODH Data → Events NOI → Events EURAC NOI.

32 Chapter 3. List of HOWTOs

http://tourism.opendatahub.bz.it

OpenDataHub Docs Documentation, Release 1.0

You will now see a list of events that will take place at Bolzano’s NOI Techpark today or in the next days. For each
event, the description, start and end date, and the location where it takes place are shown. If the event is marked as
Active, it is displayed on the official NOI web page at https://today.noi.bz.it/.

In order to add a new event, click on the New button to create a new event.

In the dialog that opens, fill in all the fields you deem necessary, especially the title and description at least in one of
the three available languages.

3.8. How to insert and modify NOI Events 33

https://today.noi.bz.it/

OpenDataHub Docs Documentation, Release 1.0

Remember to tick the Active and noi.bz.it Active checkboxes: The latter allows the event to show up on https://today.
noi.bz.it/.

If the event is set to take place in more rooms, click on the Room Management button to add more rooms and time
slots to the event.

If the event has a web page and/or a video trailer, you can add a link to them in the Web Page (URL) and Video (URL)
text-fields.

It is even possible to add images to the event, by clicking on the Images tab on top of the dialog and then on Choose
File to upload a file. For each image, a few information can be added:

• The author’s name.

• The licence used for the image, either Proprietary or CC0.

Hint: We prefer that a CC0 licence be used; it is neccessary to have the rights to upload the photo with CC0.

• The position of the image within the gallery, if you upload more than one image. Image in position 0 will be the
cover page of the gallery

When you provided all the necessary information, click on Create to create the event.

If you later need to modify the event, click on the Edit button next to the event in the event list.

34 Chapter 3. List of HOWTOs

https://today.noi.bz.it/
https://today.noi.bz.it/

OpenDataHub Docs Documentation, Release 1.0

Mobility

1. HOWTO access e-Charging Stations Data. Since the APIs are very generic, directions contained in this howto
can be applied to any dataset of the mobility domain.

Tourism

1. HOWTO access Tourism Data. This howto describes the various filters available in the Tourism domain

2. HOWTO use the Open Data Hub’s Tourism Data Browser. This howto provides information about accessing
the data originating from the Tourism domain.

3. Quick and (not-so) Dirty Tips for Tourism. This howto provides some simple use cases/API calls and various
tricks&tips for the Tourism domain.

Miscellaneous

1. How to use authentication. Developers and Code Contributors have a dedicated tutorial to help them bootstrap-
ping the environment and start coding right away.

2. How to setup your local Development Environment. This tutorial is still in development and not so useful at the
moment!

3. How to Sett Up Postman (API Development Environment). This howto guides you in the setup of Postman, a
popular API development environment.

4. How to insert and modify NOI Events. In this howto you will learn how to enter and modify NOI events directly
from the Open Data Hub portal.

3.8. How to insert and modify NOI Events 35

OpenDataHub Docs Documentation, Release 1.0

36 Chapter 3. List of HOWTOs

CHAPTER 4

Apps built from Open Data Hub datasets

This section features a list of applications, and some additional useful information about them, built using the Datasets
that the Open Data Hub team makes available.

The additional information may include the home page of the app, the contact address of the developers, a description,
and the type of the application (mobile app, web page, and so on)..

However, the most important attribute of each project is probably its status, which might be one of these three:

• Experimental status, aka alpha stage, shown by the badge. Applications falling in this cate-
gory are in the early stage of development, and might be for example, a proof of concept or the outcome of a
hackathon. They might not be maintained or developed further and should not be considered mature enough to
be deployed in a production environment.

• Development status, aka beta stage, shown by the badge. Application in beta stage are developed
actively and might already be suitable for a production environment.

• Production status. These applications are already used in production environment.

If you are developing one application with the data provided by datasets of the Open Data Hub project, send an email
with a short description, an email contact and its status and we’ll add it to the list.

4.1 Alpha Stage Apps

All the projects listed in this section have been built during various hackathons and must be considered as Experimen-

tal.

Summer Lido Hackathon 2018

HackTheAlps 2018

Projects developed during the Summer Lido Hackathon 2018

37

http://hackathon.bz.it/edition/summer-2018

OpenDataHub Docs Documentation, Release 1.0

• South Tyrol Crime Scene (STCS) is an interactive thriller combining traditional storytelling and augmented
reality.

• SAMA - Smart Application Medical Appointment is a prototype for the booking of appointments in the South
Tyrolean hospitals.

• IFC Converter and AIVRTour is on the one side a converter of 3D reality data formats (form ifc to dae/obj),
while on the other side it applies AI to virtual reality for museums, real estates, and on tourism.

• Travel & Win is an app for South Tyrol tourists that can collect points to receive gifts.

• Memorama Get your pictures printed on paper and delivered to your hotel.

• Sportmap.net Creation of a OpenData map with trendy sport locations, courses, & events.

• Game of Alps Get unique experiences by completing challenges around South Tyrol. Gather crystals and collect
rewards from local tourist offices. Additionally get discounts for restaurants and entrance tickets.

Projects developed during HackTheAlps 2018.

• Activity Crystal goal of the project was to build something simple & fun that gets people off their couches.

4.2 Beta Stage Apps

• https://mobility.meran.eu. This web site is the first example of a Mobility-as-a-Service application; it includes
real-time information of multiple mobility services, like public transportation, places of interests, car sharing
services, parking lots, ans more.

• https://parking.bz.it. A web site that displays the real-tim parking availability of off-street parking lots in South
Tyrol. On mobile devices, it can also show directions from your current position to the chosen parking lot.

• http://traffic.bz.it. Some streets in South Tyrol are monitored for real-time vehicular travel times; the data
collected are used by this web site to show traffic slowdowns or jams.

• http://bus.bz.it. This web site shows the real-time positions of the buses managed by the public transport operator
SASA. Urban or suburban bus lines can be shown, and for each bus can be shown the next few stops and an
estimate of the arrival time.

• http://map.clean-roads.eu. One of the CLEAN-ROADS project outcomes, this web site shows real-time data of
the meteorological stations that are situated along public streets.

4.3 Production Stage

• http://www.sudtirol.info. This website uses data from the Datasets in the Tourism Domain to display events in
the region of South Tyrol and other useful information to help tourists organise their holiday in South Tyrol.

• South Tyrol Guide, the official smartphone app for exploring and experiencing South Tyrol, available for both
Android and iPhone mobile devices.

38 Chapter 4. Apps built from Open Data Hub datasets

https://hackathon.bz.it/project/ifc-converter-and-aivrtour
:hp:sportmap.net
http://hackathon.bz.it/edition/september-2018
http://hackathon.bz.it/project/activity-crystal
https://mobility.meran.eu
https://parking.bz.it
http://traffic.bz.it
http://bus.bz.it
http://map.clean-roads.eu
http://www.sudtirol.info
https://play.google.com/store/apps/details?id=com.suedtirol.android
https://itunes.apple.com/us/app/s%C3%BCdtirol-mobile-guide/id339011586?mt=8

CHAPTER 5

Frequently Asked Questions

This section contains answers to question frequently asked by people who want to contribute to the Open Data Hub
project or search for information about the project.

Q: What is this project about? A: The project is described in section Introduction.

Q: I am interested in taking part in the Open Data Hub project. A: Check section How To Contribute.

Q: I am a developer, are there guidelines for the development? A: Sure! Check the dedicated section: Resources
for Developers.

Q: How do I access the data served by the Open Data Hub? A: You can see if section List of HOWTOs contains
what you are looking for. If not, you can open an issue in our bug tracker.

Q: The project misses a. . . [feature, dataset, howto, etc.]! A: Please check section Bug reporting and feature re-
quests then open an issue on one of our bug trackers.

39

OpenDataHub Docs Documentation, Release 1.0

40 Chapter 5. Frequently Asked Questions

CHAPTER 6

Appendices

The following is the list of appendices.

6.1 Datasets

The goal of the Open Data Hub Project is to make available datasets containing data about the South Tyrolean Ecosys-
tem, to allow third parties to develop novel applications on top of them, consuming the exposed data. These appli-
cations may range from a simple processing of datasets to extract statistical data and to display the result in different
graphic formats like pie-charts, to far more complex applications that combine data from different datasets and corre-
late them in some useful way.

Note: This page was last updated on 15th January 2019, hence all information about the availability of datasets is
correct as of this date. This page will be updated in due time as soon as more material will be made available.

This page will be soon removed, as all the information statically provided here will be in the near future be replaced
by the broker service, which dynamically maintains the list.

As seen in Figure 1.1, data originate from different domains (Mobility, Tourism, and so on); they are gathered from
sensors and packed within datasets. Sensors can be for example GPS devices installed on buses that send their real-
time geographic position or a small electronic device on a plug of an e-charging station that checks the if the plug is
being used or not, to let people know that the charging outlet is available.

A note about datasets.

At the time of writing, only a few datasets are published. As mentioned before in this section, the goal is
to expose datasets containing only Open Data, which is at the moment not the case for all datasets. Indeed,

some of the datasets contain data that can not be distributed under an open licence like, e.g., or

. Therefore, to allow the highest possible data to be shared, an authentication mechanism has
been implemented, to prevent access to the data in the datasets that has not yet been published as Open Data.

41

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by-sa/4.0/

OpenDataHub Docs Documentation, Release 1.0

Datasets which require authentication are marked with the badge. If you are interested
in accessing closed data, you can try to contact the dataset owner or express your interest to the Open Data Hub
team.

Please refer to section Authentication for details.

For each domain the available datasets are listed. Please refer to the next sections for a complete list.

6.1.1 Datasets in the Mobility Domain

List of datasets in the mobility domain.

• it.bz.opendatahub.weather

• it.bz.opendatahub.environment

• it.bz.opendatahub.parking

• it.bz.opendatahub.bluetooth

• it.bz.opendatahub.trafficstation

• it.bz.opendatahub.linkstation

• it.bz.opendatahub.streetelements

• it.bz.opendatahub.rwisstation

• it.bz.opendatahub.carsharing

• it.bz.opendatahub.bikesharing

• it.bz.opendatahub.echargingstation

• it.bz.opendatahub.carpoolinghub

• info.opensasa.realtime

In this section, the following information are provided for each of the above-listed dataset:

• The licence of the data present in the dataset.

• The output format of the API call.

• An e-mail contact for the dataset.

• The versions of the API that can be used to access the dataset.

• The swagger URL of the APIs.

it.bz.opendatahub.weather

This dataset contains meteorological data provided by the hydrographical Department of South Tyrol.

42 Chapter 6. Appendices

OpenDataHub Docs Documentation, Release 1.0

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/meteorology

it.bz.opendatahub.environment

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/environment/swagger-ui.html

it.bz.opendatahub.parking

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/parking/swagger-ui.html

it.bz.opendatahub.bluetooth

The data for this datasets are collected by experimental Bluetooth-based sensors and detectors and represent traffic
information, since the detectors scan available Bluetooth devices on board of vehicle that drive on.

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/BluetoothFrontEnd

it.bz.opendatahub.trafficstation

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/sensors/swagger-ui.html

6.1. Datasets 43

https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/meteorology
http://ipchannels.integreen-life.bz.it/environment/swagger-ui.html
http://ipchannels.integreen-life.bz.it/parking/swagger-ui.html
https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/BluetoothFrontEnd
http://ipchannels.integreen-life.bz.it/sensors/swagger-ui.html

OpenDataHub Docs Documentation, Release 1.0

it.bz.opendatahub.linkstation

Similar to the Bluetooth dataset, data available in this dataset are collected by Bluetooth-based sensors to measure the
level of traffic on the strech of a road.

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/LinkFrontEnd

it.bz.opendatahub.streetelements

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/street/swagger-ui.html

it.bz.opendatahub.rwisstation

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/roadweather/swagger-ui.html

it.bz.opendatahub.carsharing

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/carsharing/swagger-ui.html

it.bz.opendatahub.bikesharing

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/bikesharing/swagger-ui.html

44 Chapter 6. Appendices

https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/LinkFrontEnd
http://ipchannels.integreen-life.bz.it/street/swagger-ui.html
http://ipchannels.integreen-life.bz.it/roadweather/swagger-ui.html
https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/carsharing/swagger-ui.html
http://ipchannels.integreen-life.bz.it/bikesharing/swagger-ui.html

OpenDataHub Docs Documentation, Release 1.0

it.bz.opendatahub.echargingstation

This datasets exposes data about the existing e-charging stations in South Tyrol and their status, including historical
data and usage.

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/EchargingFrontEnd

it.bz.opendatahub.carpoolinghub

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://ipchannels.integreen-life.bz.it/carpooling/swagger-ui.html

info.opensasa.realtime

This datasets shows the real time position of buses operated by SASA in South Tyrol and, through a few subsets,
additional information about lines, station boards, and news.

License
Output geoJSON
E-mail contact info@sasabus.org
API version v1
Swagger URL http://sasabus.org/opendata

The additional subsets expose data in different formats:

• info.opensasa.plandata (VDV 451 - VDV 452)

• info.opensasa.stationboard (JSON)

• info.opensasa.news (JSON)

• info.opensasa.rssDE (XML)

• info.opensasa.rssIT (XML)

6.1.2 Datasets in the Tourism Domain

List of datasets in the tourism domain.

• it.lts.accommodation

• it.hgv.package

6.1. Datasets 45

https://creativecommons.org/publicdomain/zero/1.0/
http://ipchannels.integreen-life.bz.it/EchargingFrontEnd
http://ipchannels.integreen-life.bz.it/carpooling/swagger-ui.html
https://creativecommons.org/licenses/by-sa/4.0/
http://sasabus.org/opendata

OpenDataHub Docs Documentation, Release 1.0

• it.lts.poi

• it.lts.activity

• it.lts.event

• it.bz.opendatahub.activity_poi

• it.lts.gastronomy

• it.bz.opendatahub.location

• it.bz.opendatahub.ski

• it.bz.opendatahub.snowreport

• it.bz.opendatahub.webcam

• it.bz.opendatahub.weather-siag

• it.bz.siag.weather

• it.bz.siag.museum

Like in the previous section, the following information are provided for each of the above-listed dataset:

• The licence of the data present in the dataset.

• The output format of the API call.

• An e-mail contact for the dataset.

• The versions of the API that can be used to access the dataset.

• The swagger URL of the APIs.

it.lts.accommodation

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Accommodation

it.hgv.package

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://service.suedtirol.info/swagger/ui/index#/Package

46 Chapter 6. Appendices

http://tourism.opendatahub.bz.it/swagger/ui/index#/Accommodation
http://service.suedtirol.info/swagger/ui/index#/Package

OpenDataHub Docs Documentation, Release 1.0

it.lts.poi

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Poi

it.lts.activity

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Activity

it.lts.event

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Event

it.bz.opendatahub.activity_poi

This dataset contains a collection of activities and points of interest (PoI) in the South Tyrol region. The available data
have been extracted from different sources, but at the moment only the data about the South Tyrolean museums and
wines are freely available without authentication. These data can be obtained by using the keywords MuseumData
and SuedtirolWein in the source filter of the dataset.

License museum and wine data , other data
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/ODHactivityPoi

it.lts.gastronomy

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Gastronomy

6.1. Datasets 47

http://tourism.opendatahub.bz.it/swagger/ui/index#/Poi
http://tourism.opendatahub.bz.it/swagger/ui/index#/Activity
http://tourism.opendatahub.bz.it/swagger/ui/index#/Event
https://creativecommons.org/publicdomain/zero/1.0/
http://tourism.opendatahub.bz.it/swagger/ui/index#/ODHactivityPoi
http://tourism.opendatahub.bz.it/swagger/ui/index#/Gastronomy

OpenDataHub Docs Documentation, Release 1.0

it.bz.opendatahub.location

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Common

it.bz.opendatahub.ski

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_GetSkiAreas

it.bz.opendatahub.snowreport

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#!/Weather/Weather_GetSnowReportBase

it.bz.opendatahub.webcam

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Webcam

it.bz.opendatahub.weather-siag

License
Output JSON, mime-type application/json
E-mail contact info@opendatahub.bz.it
API version v1
Swagger URL http://tourism.opendatahub.bz.it/swagger/ui/index#/Weather

48 Chapter 6. Appendices

http://tourism.opendatahub.bz.it/swagger/ui/index#/Common
http://tourism.opendatahub.bz.it/swagger/ui/index#!/Common/Common_GetSkiAreas
http://tourism.opendatahub.bz.it/swagger/ui/index#!/Weather/Weather_GetSnowReportBase
http://tourism.opendatahub.bz.it/swagger/ui/index#/Webcam
http://tourism.opendatahub.bz.it/swagger/ui/index#/Weather

OpenDataHub Docs Documentation, Release 1.0

it.bz.siag.weather

License
Output XML#

E-mail contact meteo@provinz.bz.it
API version –
Swagger URL –

#The dataset in German can be dowloaded as XML using this URL: https://wetter.ws.siag.it/Weather_V1.svc/web/
getLastProvBulletin

it.bz.siag.museum

This datasets contains information about the museums in the South Tyrol region and is retrieved directly from the
Open Data portal of the Autonomous Province of Bolzano.

More information about this dataset, including metadata, is available in either Italian or German at the following
URLs, respectively:

• IT http://dati.retecivica.bz.it/it/dataset/musei-in-alto-adige

• DE http://daten.buergernetz.bz.it/de/dataset/musei-in-alto-adige

License
Output JSON, CSV, XML#

E-mail contact museen@provinz.bz.it
API version –
Swagger URL –

#The dataset can be dowloaded as XML using this URL: https://cert.provinz.bz.it/musport/services/
MuseumsService.MuseumsServiceHttpSoap11Endpoint/getMuseums

6.1.3 The Broker

The Open Data Hub Broker is a recently introduced online service (November 2018) that gives an overview and quick
access of the datasets available within the Open Data Hub project.

The service is accessible at the URL https://api.opendatahub.bz.it and consists of a web page, divided in two parts:

• The list of datasets accessible through the broker, which are all the datasets containing publicly accessible data.
This list is dynamically created when the page is loaded, therefore is is always up to date. Each dataset can be
clicked to open a panel with additional information about it.

• An overview of the REST API provided by the broker, a few methods that allow to query the existing datasets.
Results are in JSON-LD format and use the DCAT vocabulary. This means that all the keyword in the result
set belong to a W3C standard, allowing the data in the result set to be reused and combined with results from
foreign datasets that use the same vocabulary.

The results obtained by querying the broker give a number of metadata about one or more datasets, including the
Contact for information or reuse of the dataset, and the Base URL, allowing for quick and direct access to the data,
using the ODH APIs, described in the Documentation URL.

6.1. Datasets 49

mailto:meteo@provinz.bz.it
https://wetter.ws.siag.it/Weather_V1.svc/web/getLastProvBulletin
https://wetter.ws.siag.it/Weather_V1.svc/web/getLastProvBulletin
http://dati.retecivica.bz.it/it/dataset/musei-in-alto-adige
http://daten.buergernetz.bz.it/de/dataset/musei-in-alto-adige
https://creativecommons.org/publicdomain/zero/1.0/
mailto:museen@provinz.bz.it
https://cert.provinz.bz.it/musport/services/MuseumsService.MuseumsServiceHttpSoap11Endpoint/getMuseums
https://cert.provinz.bz.it/musport/services/MuseumsService.MuseumsServiceHttpSoap11Endpoint/getMuseums
https://api.opendatahub.bz.it
https://json-ld.org/
https://www.w3.org/TR/vocab-dcat/

OpenDataHub Docs Documentation, Release 1.0

Note: While the Base URL, when accessed, may give an error, the API calls work and produce correct results. For
example, consider the it.bz.opendatahub.echargingstation dataset. Calling the method get-station-details by using
its base URL, https://api.opendatahub.bz.it/it.bz.opendatahub.echargingstation, actually produce the expected result,
i.e., the list of stations in the dataset with all the information attached to it:

curl
"https://api.opendatahub.bz.it/it.bz.opendatahub.echargingstation/rest/get-station-
→˓details"
| jq '.' | head -10

[
{
"_t": "it.bz.idm.bdp.dto.emobility.EchargingStationDto",
"id": "ASD_00000038",
"name": "CAMPING_LATSCH",
"latitude": 46.622135,
"longitude": 10.863569,
"municipality": "Latsch - Laces",
"capacity": 1,
"provider": "Alperia Smart Mobility",

Broker’s REST API

The methods available are the following.

• GET /datasets Returns a list of all datasets in form of a dcat:Catalog.

• GET /datasets/{id} Retrieve the metadata of a single dataset by its identifier, which corresponds to the
identifier key that you can find in the in the outcome of the previous method’s call. See also the excerpt below.
The result set is a dcat:Dataset.

• GET /datasets/search/{query} Execute a custom, case insensitive query on the available datasets.
All the fields within the result set of the GET /datasets query will be considered for an answer. Multiple
words can be used as query string.

The outcome of the query looks like the following excerpt which is, as mentioned in the previous section in JSON-LD
format and uses the standard DCAT vocabulary.

{
"title": "it.bz.opendatahub.echargingstation",
"publisher": {

"title": "Alperia, route220, Nevicam, Driwe",
"@type": "http://www.w3.org/ns/org#Organization",
"@context": {

"title": "http://purl.org/dc/terms/title"
}

},
"keyword": [

"echarging",
"mobility",
"realtime"

],
"identifier": "it.bz.opendatahub.echargingstation",
"distribution": [

{

50 Chapter 6. Appendices

https://api.opendatahub.bz.it/it.bz.opendatahub.echargingstation
http://www.w3.org/ns/org#Organization
http://purl.org/dc/terms/title

OpenDataHub Docs Documentation, Release 1.0

"license": "https://creativecommons.org/publicdomain/zero/1.0/",
"format": "application/json",
"accessURL": "https://api.opendatahub.bz.it/it.bz.opendatahub.

echargingstation",
}

}
],
"description": "Real time information about the echarging statons",
"contactPoint": {

"hasEmail": "info@geobank.bz.it"
},
"@type": "http://www.w3.org/ns/dcat#Dataset",
"@id": "https://api.opendatahub.bz.it/datasets/it.bz.opendatahub.

echargingstation",
}

Note: References to some of the definitions of the vocabulary have been deleted from the excerpt for the sake of
clarity.

6.2 Resources for Developers

This appendix contains all information that are necessary to developers that want to collaborate with the Open Data
Hub team (e.g., developers that send pull requests to the Open Data Hub repositories) or are contracted to write code
for the Open Data Hub project (Open Data Hub Core Hacker) or app

6.2.1 Guidelines for Developers

Open Data Hub is a collection of software, databases, and services coordinated and hosted by IDM Südtirol / Alto
Adige. Currently, Open Data Hub systems are related to mobility and tourism. In the future Open Data Hub might
diversify into more fields.

Companies and developers contributing to Open Data Hub must follow the guidelines listed in the documents as close
as possible.

The aim of the Open Data Hub Developer’s Guidelines (“The Guidelines”) is to simplify the hosting and maintenance
of the software, databases, and services by the Open Data Hub developers and maintainers at IDM (“the Open Data
Hub team”).

The Guidelines describe the conventions to which a developer must adhere, to be able to become an active Open Data
Hub developer or to see his work being incorporated into the Open Data Hub. They are split in two parts:

• Platform Guidelines explain the preferred programming languages, how to expose the data after you manipu-
lated them, the use of third-party libraries or plugins, and so on.

• Database Guidelines clarify how to design a database that shall become part of the Open Data Hub platform.

Both of them are summarised in the remainder of this section, and can be found in full version in the pages Platform
Guidelines - Full Version and Database Guidelines - Full Version respectively

6.2. Resources for Developers 51

https://creativecommons.org/publicdomain/zero/1.0/
https://api.opendatahub.bz.it/it.bz.opendatahub.echargingstation
https://api.opendatahub.bz.it/it.bz.opendatahub.echargingstation
mailto:info@geobank.bz.it
http://www.w3.org/ns/dcat#Dataset
https://api.opendatahub.bz.it/datasets/it.bz.opendatahub.echargingstation
https://api.opendatahub.bz.it/datasets/it.bz.opendatahub.echargingstation

OpenDataHub Docs Documentation, Release 1.0

Platform Guidelines - Bignami Version

The Platform Guidelines contain the software and programming language requirements, coding conventions, and
directions for development. This section contains only the most important points.

Please check the full version of this document at Platform Guidelines - Full Version if you want to know more details,
if you have some doubt or if what you were looking for is not mentioned in this summary.

• Programming Language is Java, in its latest or second to last version.

• The source code must be documented according to the Javadoc style guide and tags.

• Java components of Open Data Hub can be developed as libraries, standalone applications, or server appli-
cations running in Apache Tomcat.

• The source code is built nightly; build configuration should be provided in either Ant or Maven (preferred),
Makefile, or shell script.

• Third party libraries can be used, provided they are established, FOSS-licenced, and do not overlap function-
alities. This applies also to third party libraries used in application developed in other languages.

• Front-end applications can be deployed in Javascript, version EC 2015, and must support modern browsers.

• Node.js can be used to deploy headless or server applications.

• Web front ends use the latest HTML and CSS versions, must work on mobile devices (responsive design) and
should implement some basic accessibility principle.

• JSON must be used as exchange language, while XML is welcomed as well.

• The latest or second to last version Apache Tomcat is used to run server application; only API/REST end points
have direct access to the database server.

• There’s no file system persistence, everything must be stored in the DB. JDBC data source and passwords
should be stored in environmental variables.

• Pay attention to RAM usage, applications will undergo load testing.

• PostgreSQL RDBMS (Relational DataBase Management System) is used, but not in its recent release (expect
to use 2-3 versions before the latest), PostGIS spatial extension is required as well.

• Developers will have an unprivileged role to access the DB and must follow best practices to query the DB from
Java/Javascript.

Database Guidelines - Bignami Version

The Database Guidelines contain the database design and database programming principles along with software ver-
sion requirements. This section contains only the most important points.

Please check the full version of this document at Database Guidelines - Full Version if you want to know more details,
if you have some doubt or if what you were looking for is not mentioned in this summary.

• The database can be designed with one of the Relational Model, Object-Relational Mapping (ORM), or
Semi-structured Data methodologies.

• A database designed with either methodology must be shipped with DDL (Data Definition Language) - schema
files containing the CREATE statements.

• Each database must include a version table and indices on tables.

• All (SQL) source code must be well-documented, with in-line comments and higher level documentation.

• Use standard database features - Sequences, primary and foreign keys, constraints (unique, check, not null),
default values, views, and so on and so forth.

52 Chapter 6. Appendices

http://www.oracle.com/technetwork/java/javase/tech/index-137868.html
http://tomcat.apache.org/
https://postgis.net/

OpenDataHub Docs Documentation, Release 1.0

• Separate business logic from database design; avoid stored procedure as much as possible.

• Small procedures and functions, if needed. must be written in PL/PgSQL.

• Do not use foreign data wrappers.

• Consider using declarative partitioning for large tables - and contact Open Data Hub team beforehand to discuss
it.

• Always use UTF8 character encoding and do not override it.

• Default collation is en_US, which works well for German and Italian as well.

• Never use money type, but numeric.

• Dates and time stamps must be store to avoid ambiguity. Never store them as text, but rather use their data types,
date (in UTC format) and timestamp with timezone. Unix timestamp is accepted as well.

• When using or manipulating JSON data always follow ISO_8601 standard.

6.2.2 Platform Guidelines - Full Version

Changelog

• 2018-05-28 version 1.0

• 2018-03-30 version 1.0-beta

This document represents Part 1 of the guidelines and presents the preferred programming languages, databases, and
protocols to be used, data exchange and exposition methods, coding conventions, and regulates the use of third-party
libraries.

There are scenarios where an exemption from the guidelines is acceptable. The following is a non-exhaustive list of
such scenarios.

1. Use of foreign technologies. The development of a Open Data Hub component requires the use of platforms,
languages or generally technologies that are different from the ones listed in the guidelines. An example might
be a component that depends on an already developed custom library written in a programming language not
listed in the guidelines.

2. Use of technologies that are not mentioned in the guidelines. Future Open Data Hub component might
require technology that is not listed at all in the guidelines. An example is a component that must be hosted on
specific hardware needed for machine learning platforms.

A Open Data Hub contributor who runs into such a scenario must contact the Open Data Hub team to discuss that
specific scenario. If the exemption is reasonable and can be motivated the Open Data Hub team will agree and allow
it. To avoid misunderstandings, contributors must expect to get a written statement about such a decision.

Note: If you can not find any answer to your question or doubt in this document, please contact the Open Data Hub
team or open an issue in the github repository of this document.

Programing Languages, Environments, and Related Technologies

6.2. Resources for Developers 53

https://github.com/idm-suedtirol/odh-docs

OpenDataHub Docs Documentation, Release 1.0

Java

The chosen programing language for Open Data Hub is Java, more precisely the Java Platform, Standard Edition (Java
SE).

Source code will be compiled with either the OpenJDK or the OracleJDK, which share the same code base anyway.
Resulting binaries will run in the corresponding JVM.

Java Version

Java is generally backwards-compatible, so code written for a previous version of the JDK will likely compile on the
next compiler version and run on the next JVM version. However, contributors ought to use a reasonably modern
version of Java in order to avoid deprecation warnings and make use of modern language features.

Contributors can expect the Open Data Hub team to use the current stable version of the language. Of course, a
certain delay is to be expected between the time a Java release becomes generally available and the time OS vendors
and hosting providers make it available. This delay, that can easily be in the order of one year, must be taken into
account.

Environments

Open Data Hub Java components can be developed as:

• Java libraries.

• Java standalone applications, running headless.

• Java server applications running in Apache Tomcat:

– API/REST end points.

– Web applications.

More information about standalone and server applications can be found under section Platforms and Architectural
Considerations.

Open Data Hub components must not be developed as fat clients (like e.g., Swing, SWT). Web applications are the
preferred technology.

While native Android applications can be developed in Java, they should also be avoided as they are not a cross
platform solution (Android vs. IOS). For the mobile space, (mobile) web applications or cross platform environments
based on JavaScript are preferred (see section JavaScript).

Documentation

Source code must be commented following the established Javadoc style guide and tags.

Complex section of the code (for example not-trivial algorithms) must have dedicated comment sections.

Higher-level documentation must be available as well and if possible, it must be kept in a simple, text-based format,
such as plain text, MarkDown or HTML. The rationale behind this choice is that these formats - unlike binary file
formats such as ODT or DOCX - can be versioned in a source code management system.

54 Chapter 6. Appendices

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-137868.html

OpenDataHub Docs Documentation, Release 1.0

Builds

The Open Data Hub team runs automatized nightly builds (and tests) of Open Data Hub software components. It must
therefore be possible to rebuild the binaries (JARs or WARs) starting from the source code all the way down to the
complete binaries in a headless environment.

Developers must provide standard build configurations for one of the usual Free / Open Source Software (“FOSS”)
build tools used in the Java space (such as Maven or Ant). Alternatively a simple Makefile or shell script (the nightly
build system runs on Linux) will suffice.

Considerations about testing are described in another document.

Use of Third-Party Libraries

Most Java projects use one or more third-party libraries. Regarding the use of such libraries in Open Data Hub, the
following guidelines apply:

• The library must be stable, well known and well supported.

• The library must be distributed under a FOSS license.

• Avoid creating pile-ups of libraries with overlapping functionality.

JavaScript

While the primary programing language for Open Data Hub is Java, there are use cases where JavaScript is accepted
or even dictated by the environment (like e.g, web front ends).

The Open Data Hub team endorses the language revision ECMAScript 2015 (a.k.a. ES 6) and encourages a modern,
expressive use of the language (e.g. block scoped variables, function expressions, promises and many more).

The usage of JavaScript falls into the two categories: Web front ends and Node.js, as detailed in the next sections.

JavaScript Web Front Ends

Most modern web applications will use JavaScript in the web front end. The Open Data Hub team is agnostic about
how the front end is implemented (classic web application vs. single page web application).

In the likely case that JavaScript front end libraries and frameworks are used, the following guidelines apply:

• The library or framework must be stable, widely used and well supported - avoid using cutting edge libraries
with APIs that are not settled yet.

• The library or framework must be distributed under a FOSS license.

• The library or framework must be cleanly imported into the project with one of these methods:

– By means of a JavaScript package manager with a configuration file (such as npm and package.json).

– Manually, by using a clearly labelled include path (such as import /vendor/name/version/
file.js).

To avoid having to support many programing languages, source code must not be developed in a transpiled language
(e.g. TypeScript or CoffeeScript),

In terms of browser compatibility, developers can use ES 2015, as said. According to the ECMA Compatibility table,
ES2015 is well supported in all modern browsers (Chrome, Firefox, Safari, Edge) both in desktop and mobile version.

6.2. Resources for Developers 55

https://kangax.github.io/compat-table/es6/

OpenDataHub Docs Documentation, Release 1.0

Generally speaking, support of legacy browsers (MS Internet Explorer) is not an issue. Cross-browser testing is, of
course, still necessary and expected.

If a build system such as webpack is needed, its use must be clearly documented as the Open Data Hub team must
integrate it into their nightly builds system.

JavaScript Running in Node.js

Besides the front end, JavaScript code can be also used for headless or server applications, provided they have limited
complexity.

In case the developer needs to create large pieces of business logic or complex web applications, Java ought to be the
preferred environment.

Most front end guidelines mentioned in the previous section apply here as well, in particular those about libraries. A
complete package.json file is a must here. It is required that the Node.js project be installed simply by running
npm install.

Use cases for Node.js in the Open Data Hub are:

• Simple REST end points.

• Simple web applications.

• Tools that operate on JSON data.

• Scripting / glue code.

The Open Data Hub team generally uses an LTS release of Node.js, adopted soon after it becomes available, although
some time might be needed for the hosting provider to make it available.

SQL

See section PostgreSQL below.

HTML and CSS

Web front ends are, of course, developed using HTML and CSS in their current versions.

It is important that all web pages render correctly in all modern browsers (Chrome, Firefox, Safari, Edge).

Generally speaking, support of legacy browsers (MS Internet Explorer) is not an issue. Cross-browser testing is, of
course, still necessary and expected. A minimum requirement is that all HTML validates against the W3C validator.

As most web traffic is nowadays coming from mobile devices, all general purpose web UIs exposed to end users
should be implemented to work well on mobile devices by using standard techniques, such as responsive design.

In the development of the web front-end, Accessibility principles should be taken into account when designing web
pages.

XML and JSON

XML and JSON are both important data description languages, heavily used in the context of Java, JavaScript, web
applications, and APIs; therefore they are both used and welcome in the Open Data Hub.

56 Chapter 6. Appendices

https://webpack.js.org/
https://github.com/nodejs/Release
https://validator.w3.org/

OpenDataHub Docs Documentation, Release 1.0

JSON is of particular interest as that is the preferred data exchange format for REST endpoints. It also plays a role in
the persistence layer, as Open Data Hub allows the use of JSON records in PostgreSQL tables (see section PostgreSQL
below).

Platforms and Architectural Considerations

Java server applications running in Apache Tomcat

Apache Tomcat is a well established, light weight FOSS web server that implements among others the Java Servlet
specification.

The Open Data Hub team generally uses the latest or second to last release of Tomcat, to run Java server applications
in the previously mentioned contexts:

• API/REST end points.

• Web applications.

The desired design is that only API/REST end points directly access the database server, while web applications just
talk to the API/REST end points.

Automatic Deployment

Each Tomcat instance normally runs a few web applications, hence expect a Open Data Hub web application’s WAR
file to be bundled together with other WAR files to run on a given instance.

The automatic build systems takes care of this bundling and deploying. It is therefore very important that all WARs
can be build automatically, as mentioned in the section about Java.

No File System Persistence

Currently, the Open Data Hub team uses Amazon Web Services for Tomcat hosting, in particular the managed service
known as Elastic Beanstalk. While there is no hard dependency on this provider -that could be changed at any point
in the future, the architectural design of Elastic Beanstalk has partly modelled/shaped the engineering choices of the
Open Data Hub team in the design of its web application.

First and foremost, servers are considered volatile. This means a Open Data Hub component running in Tomcat can
not expect to see a persistent file system!

All web applications must therefore be developed with the database as the only persistent storage layer. This
architectural choice has a few advantages:

• Web applications can be distributed over more than one web server (horizontal scaling), increasing availability
and performance.

• Backup and disaster recovery is very much simplified - a failing instance can just be replaced by a new instance
and the application can be deployed again.

Developers must pay particular attention to this point: There is no persistent file system. Hence no changeable
configuration files, no application specific log files. Everything is stored in the database.

6.2. Resources for Developers 57

http://tomcat.apache.org/

OpenDataHub Docs Documentation, Release 1.0

Data Source

One subtle point is the question “Where is the JDBC data source and password stored?”. It cannot be stored in a file
and it must not be stored in the source code or context files. The recommended way to store this information is in Java
environment properties.

The system will set these variables when launching Tomcat:

JDBC_CONNECTION_DRIVER=org.postgresql.Driver
JDBC_CONNECTION_STRING=jdbc:postgresql://host:5432/db?user=username&password=secret

The developer can then read them with:

System.getProperty("JDBC_CONNECTION_DRIVER");
System.getProperty("JDBC_CONNECTION_STRING");

RAM Usage

The Open Data Hub encompasses a considerable number of web applications that are bundled together to run on a
few Tomcat server instances. Contrary to popular belief, RAM is not an infinite resource. Contributors are kindly
reminded to pay attention to the RAM usage of their web applications, since load testing is expected.

Java standalone applications, running headless

Besides wapplications running in Tomcat, the Open Data Hub also has headless standalone applications written in Java
or JavaScript/Node.js.

These are meant for special use cases, such as compute intensive jobs or batch processing, made upon request.

Almost everything said in the previous section about Tomcat, applies here as well.

Again, the preferred way to run these applications is in an environment where servers are volatile and the only persis-
tence layer is the database.

PostgreSQL

PostgreSQL is one of the most established RDBMS on the market and is generally described as being by far the most
advanced FOSS RDBMS and therefore it has been chosen as the primary database system for Open Data Hub.

There is a new major release of PostgreSQL per year and each release is supported for 5 years, according to the
versioning policy. Contrary to the case of the other products mentioned in these guidelines, the Open Data Hub team
generally will not run the latest or even previous version of PostgreSQL. Expect the version available for Open Data
Hub to lag about 2-3 years behind the latest available release.

Extensions

Most, if not all of the extensions distributed with PostgreSQL, can be expected to be available, together with the
third-party spatial query extension PostGIS is also available.

Other extensions are very likely not available, so ask the Open Data Hub team if in doubt.

58 Chapter 6. Appendices

https://www.postgresql.org/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/10/static/contrib.html
https://postgis.net/

OpenDataHub Docs Documentation, Release 1.0

Accessing the Database

Application developers will get one or more unprivileged database roles to access the database. Access will be done
via JDBC when using Java, or via any of the available PostgreSQL modules for Node.js when using JavaScript.

The data source strings must be parsed from the environment variables (see section Java server applications running
in Apache Tomcat).

The maximum number of concurrent database sessions will be generally limited per role, therefore each developer
must clarify with the Open Data Hub team what an acceptable number is, depending on the application.

Since PostgreSQL will refuse a connection if that number is exceeded, developers must take this number into account,
whether they configure a connection pool or not.

Open Data Hub databases generally are configured to accept connections only from the known hosts where the appli-
cation servers are deployed.

Contributors must follow well known best practices when querying the database from Java or JavaScript:

• When processing large datasets, consider setting smaller values of fetchsize or equivalent parameter to
avoid buffering huge result sets in memory and running out of RAM.

• When performing a huge number of DML statements consider switching off any client side autocommit feature
and rather bundle statements into transactions.

• Do not open transactions without closing them, in other words, do not leave sessions in transaction!

Database Design and Usage

This section is moved into its own document, Database Guidelines - Full Version.

6.2.3 Database Guidelines - Full Version

Changelog

• 2018-05-28 version 1.0

This document represents Part 2 of the Open Data Hub Developer’s Guidelines and clarifies the database design criteria
for developers who contribute their own databases designs to the Open Data Hub platform.

Basic information about the PostgreSQL versions, PostgreSQL extensions and how to access PostgreSQL from Java
or JavaScript, intended for developers that contribute code that just uses an existing database, are explained in the
Platform Guidelines - Full Version document as well. Please refer to that document for a general introduction to the
scope of the present guidelines.

Database design methodology

The Open Data Hub team is generally agnostic about database design and acknowledges the existence of different
design and development methodologies.

Specifically, the following methodologies are well known and acceptable:

1. Relational Model. The data schema is implemented using normalized relations with standard SQL concepts
(schemas, tables, columns and keys). The CREATE statements are written by the developer.

6.2. Resources for Developers 59

OpenDataHub Docs Documentation, Release 1.0

2. Object-Relational Mapping (ORM). The underlying data schema is based on the relation modal, but the
CREATE statements are generate by an ORM framework that automatically maps entities to relations.

3. Semi-structured Data. Entities are stored in a semi-structured format. For the Open Data Hub the preferred
format is JSON. Specifically, the recommended design is to map each entity to its own table. The table should
have at least two columns: one traditional ID column and one JSON data column. The (simple) CREATE
statements are written by the developer. The JSON data column must use the PostgreSQL native data type
jsonb (see binary stored JSON in PostgreSQL documentation).

PostgreSQL supports all three methodologies well. It is also possible to have a hybrid design mixing 1. and 3.

A developer contributing a database design to Open Data Hub must provide the DDL , a.k.a. schema files containing
the CREATE statements.

Like all source code files, the schema files must be commented in-line and accompanied by additional, higher level
documentation.

Besides source code file comments, database objects must also be commented with the SQL comment command (see
Sample Code 1 below).

Updates must be provided in the form of ALTER statements, so the modifications can be easily applied to existing
databases (see Sample Code 2 below).

All database designs should contain a version table, where the version is stored (and updated with each update).

The Open Data Hub team likes to stress this point: do not just commit database schema dumps, but rather treat
SQL-DDL files as source code and cleanly distinguish the initial creation and later updates.

Sample Code 1: A DDL source file called foo.sql

-- foo.sql
-- a document with appendices
--
-- changelog:
-- version 1.0
--
-- copyright, author etc.

create sequence foo_seq;

create table doc (
id int default nextval('foo_seq'),
title text not null,
body text,
primary key(id)

);

comment on table doc is 'stores foo documents';

create table appendix (
id int default nextval('foo_seq'),
section char(1) not null,
body text,
doc_id int not null,
primary key(id),
foreign key (doc_id) references doc(id)

);

comment on table appendix is 'stores appendices to foo documents';

create table foo_version (
version varchar not null

);

insert into foo_version values ('1.0');

60 Chapter 6. Appendices

https://www.postgresql.org/docs/10/static/datatype-json.html#JSON-DOC-DESIGN

OpenDataHub Docs Documentation, Release 1.0

Sample Code 2: Update to schema of foo.sql, version 2.0:

-- foo.sql
-- a document with appendices
--
-- changelog:
-- version 2.0 - added a field
-- version 1.0
--
-- copyright, author etc.

BEGIN;

alter table doc add column publication_date date default current_date;

update foo_version set version = '2.0';

COMMIT;

The explicit transaction (BEGIN - COMMIT) will make sure the DDL update is applied cleanly or not at all. Note that
DDL statements in PostgreSQL are transactional.

If methodology 2 (ORM) is chosen, the contributor should provide the cleanest DDL output the framework provides.

Contributors can expect their database design to be stored into a schema whose name is determined by the Open Data
Hub team and executed as a non-privileged user account that has the given schema in its default search_path (see
DDL schema path in PostgreSQL documentation).

Unless there is a specific reason, contributed designs must use only a single schema without using its explicit name,
because that will be determined by the search_path.

Contributors are invited to make good use of standard database features, including -but not limited to:

• Sequences.

• Primary and foreign keys.

• Unique constraints.

• Check constraints.

• Not null constraints.

• Default values.

• Views.

Stored procedures and functions, foreign data wrappers

The Open Data Hub team would like to avoid stored procedures and functions as far as possible. Business logic should
be implemented in the middle tier, not in the database system.

Hence, the general rule is that database designs submitted to the Open Data Hub must not contain business logic
operations.

6.2. Resources for Developers 61

https://www.postgresql.org/docs/10/static/ddl-schemas.html#DDL-SCHEMAS-PATH

OpenDataHub Docs Documentation, Release 1.0

However, (small) utility procedures and functions, especially with respect to triggers, are allowed. When used, these
procedures and functions must be written in PL/PgSQL. Other server-side languages, even the trusted ones, are neither
allowed, nor can they be expected to be available.

An example of such an allowed instance of a procedure is an audit trigger that, for any changes made to Table A
generates a log entry that is stored in Table B.

Foreign data wrappers (SQL/MED) must not be used.

Indices and Partioning

The submitted database designs must include creation of indices on tables.

Of course, the Open Data Hub team will monitor database performance and might be able to add indices at a later
time. However, not anticipating obvious index candidates is considered a bug.

The database design contributor knows best what tables and what columns will benefit from indices, when the number
of records grows.

In particular, if methodology 3 (JSON) is chosen, PostgreSQL provides specialized multi-dimensional indices of type
GIN to index the jsonb data type.

If the contributor anticipates designs with large tables (say more than 100M records or more than 5 GB on disk)
and expects queries needing to sequentially scan those tables, declarative partitioning should be considered. The
contributor must then contact the Open Data Hub team to agree on a declarative partitioning scheme in advance.

Encoding, collation and localization

All Open Data Hub PostgreSQL databases use the UTF8 character encoding as default encoding and this must not be
overridden by a database design contributor.

The Open Data Hub team wishes to avoid any character encoding issues by using UTF8 for everything.

The default collation is en_US. For PostgreSQL running on Linux this collation already behaves reasonably for
German and Italian:

select * from t order by s collate "en_US";
t

A
À
Ä
B

(4 rows)

A contributor is free to add a custom collation such as de_DE or it_IT, either at the DDL level or the query level
(see PostgreSQL documentation on collation), although there is most likely no need to apply other collations.

A database design must not use the money type. Currency amounts must be stored in fields of type numeric and
the currency must be stored separately.

One important aspect concerns dates and timestamps.

Since the Open Data Hub applications span multiple regions and time zones, it is very important to be precise about
date and time formats and time zone information.

Dates must be stored in the appropriate date data type. Dates stored in this data type will be automatically converted
into the client native format when queried. Never store dates as text because this creates ambiguity. For example,
what date represent the string 10-07-2018? Is it the seventh of October 2018 or the tenth of July 2018?

62 Chapter 6. Appendices

https://www.postgresql.org/docs/10/static/plpgsql.html
https://www.postgresql.org/docs/10/static/sql-createforeigndatawrapper.html
https://www.postgresql.org/docs/10/static/datatype-json.html#JSON-INDEXING
https://www.postgresql.org/docs/10/static/collation.html

OpenDataHub Docs Documentation, Release 1.0

The same holds true for timestamps that must be stored in the appropriate timestamp data type. Besides avoiding
format ambiguities, this data type also includes also the time zone.

Note: PostgreSQL supports also a timestamp without time zone data type, according to the SQL standard.
However, this data type must not be used as it does not store the vital time zone information.

Here ist the output of two queries executed almost at the same time on two PostgreSQL servers running in different
time zones.

This is UTC (no daylight saving).

select now();
now

2018-05-28 00:28:25.963945+00

(1 row)

And this is CET (with daylight saving), 2 hours ahead of UTC:

select now();
now

2018-05-28 02:28:27.121242+02
(1 row)

You can see that these two queries were executed (almost) at the same time thanks to the time zone information (+00
vs. +02). Without time zone information, the two time stamps appear as separated by two hours.

Note: When using the date and timestamp data types there is no format issue at all, as the PostgreSQL client
libraries automatically convert from and to the client native format. For example a Java Date object is automatically
converted to an SQL date value.

Sometimes developers need to convert to and from text. In case a contributing developer wishes to do this using
PostgreSQL functions, they must use functions to_date() and to_char() (see PostgreSQL documentation on function
formatting).

For example:

-- insert into date field d converting from German text:
insert into dates (d) values (to_date('28.5.2018', 'DD.MM.YYYY'));

-- select date field d and convert to German text:
select to_char(d, 'DD.MM.YYYY') from dates;
to_char

28.05.2018

(1 row)

Sometimes timestamps are stored as numbers, the so called Unix time stamp (see unix timestamp on wikipedia).

This is also acceptable, as the Unix time stamp always follows UTC and is therefore unambiguous.

For JSON data, contributors must make sure that the textual representation of dates and timestamps follow the ISO
standard ISO_8601 (see more on Wikipedia). Examples:

• “ts”:”2018-05-28T00:54:28.025Z”

6.2. Resources for Developers 63

https://www.postgresql.org/docs/10/static/functions-formatting.html
https://www.postgresql.org/docs/10/static/functions-formatting.html
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601

OpenDataHub Docs Documentation, Release 1.0

• “d”:”2018-05-28”

PostgreSQL accepts these strings as inputs for timestamp and date types even as text (there is an implicit type
cast).

Also note JavaScript has a Date.prototype.toISOString() method.

6.2.4 Development, Testing, and Production Environments

Note: Information in this section is still provisional!

Figure 6.1 shows the various environments which compose the whole Open Data Hub development process.

Figure 6.1: Diagram showing the development, testing, and production environments in the Open Data Hub project.

On the right-hand side, the internal structure of development is shown, while on the left-hand side, how external, and
potentially worldwide collaborators can contribute to and interact with the Open Data Hub team.

Internally, two distinct and separate environments exist: testing and production. The former is updated daily, while
the latter only when the expected result (be it a new feature, a bug fix, or anything else) is ready to be published.

Both environments are updates with Continuous Integration using Jenkins, which monitors the git repositories and
updates the environemnts.

External developers can push their own code to the git repositories (provided they have been granted with the permis-
sion to do so) and expect their work to be reviewed and tested by the Open Data Hub team.

6.2.5 GITHUB Quick Documentation for Contributors

This section guides you in setting up on your local workstation the (forked) git repositories needed to contribute to
the Open Data Hub project, along with some troubleshooting concerning pull requests and merge conflicts. For more

64 Chapter 6. Appendices

OpenDataHub Docs Documentation, Release 1.0

detailed help, please refer to the online Github help, at https://help.github.com/.

Prerequisites

In the following documentation some example names are used. Please replace them with your names:

• You need an account on Github to be able to fork projects and contribute to the Open Data Hub project.

• Replace your-username with your username on GitHub.

• Replace feature-branch with the branch name you will develop in your forked version.

Project Checkout

Before starting the development, you need to fork the original (upstream) repository.

1. Navigate to the repository on GitHub, e.g., https://github.com/idm-suedtirol/bdp-core.

2. Create a fork of the repository by clicking on the Fork button. If you are not logged in, you will be asked for a
github username and password.

Figure 6.2: Fork the repository.

3. Navigate to your forked repository on GitHub, e.g., https://github.com/your-username/bdp-core.

4. Check out the forked repository on your local machine, using the link that appears in your repository (see Figure
6.3):

git clone git@github.com:your-username/bdp-core.git

Create a pull request

In order to let your contribution be accepted in the Open Data Hub code base, you need to follow the following steps.

6.2. Resources for Developers 65

https://help.github.com/
https://github.com/idm-suedtirol/bdp-core
https://github.com/your-username/bdp-core

OpenDataHub Docs Documentation, Release 1.0

Figure 6.3: Clone the repository.

1. Checkout the development branch:

git checkout development

2. Create a new branch from the development branch locally on your machine:

git checkout -b feature-branch

3. Make some changes to the code and commit them:

git add -A
git commit -m "Some commit message"

4. Push the new branch to GitHub:

git push --set-upstream origin feature-branch

5. Navigate to your feature branch on Github (https://github.com/your-username/bdp-core/pull/new/
feature-branch) to create a new pull request (see Figure 6.4).

You can write some description as well, to describe your changes.

6. Commit and push any changes of the pull request to this new branch.

7. For every commit the continuous integration pipeline will execute the tests and display the results in the pull
request, like shown in Figure 6.5

8. In addition, the detailed logs can be viewed under https://ci.opendatahub.bz.it.

66 Chapter 6. Appendices

https://github.com/your-username/bdp-core/pull/new/feature-branch
https://github.com/your-username/bdp-core/pull/new/feature-branch
https://ci.opendatahub.bz.it

OpenDataHub Docs Documentation, Release 1.0

Figure 6.4: Create a pull request.

Figure 6.5: Show outcome of a pull request.

6.2. Resources for Developers 67

OpenDataHub Docs Documentation, Release 1.0

Syncing a Fork

Your forked repository does not receive the updates of the original repository automatically. To sync for example the
development branch of the two repositories and to keep the forked repository up-to-date with all the latest changes of
the development branch from the original repository, the following steps have to be performed.

Before you can sync your fork with the original repository (an upstream repository), you must configure a remote that
points to the upstream repository in Git. A more detailed description for the following steps can be found in the online
Github help https://help.github.com/articles/configuring-a-remote-for-a-fork/.

1. List the current configured remote repository for your fork.

git remote -v

2. Specify a new remote upstream repository that will be synced with the fork.

git remote add upstream https://github.com/idm-suedtirol/bdp-core.git

3. Verify the new upstream repository you’ve specified for your fork.

git remote -v

You need sync a fork of a repository to keep it up-to-date with the original repository (upstream repository). A more
detailed description for the following steps can be found in the online Github help https://help.github.com/articles/
syncing-a-fork/.

1. Fetch the branches and their respective commits from the upstream repository. Commits to development will
be stored in a local branch, upstream/development

git fetch upstream

2. Check out your fork’s local development branch.

git checkout development

3. Merge the changes from upstream/development into your local development branch. This brings your fork’s
development branch into sync with the upstream repository, without losing your local changes.

git merge upstream/development

Resolving Merge Conflicts

When creating and working on a pull request, it could happen that the destination branch of the original repository
will change. These changes could result in merge conflicts when pulling your code, like shown in Figure 6.6.

To resolve merge conflicts, the following steps must be performed.

1. Sync your forked repository and make sure your local destination (development) branch is up to date with the
original (upstream) repository branch.

2. Check out your feature branch.

git checkout feature-branch

3. Merge the changes of the development branch to the feature branch.

git merge development

68 Chapter 6. Appendices

https://help.github.com/articles/configuring-a-remote-for-a-fork/
https://help.github.com/articles/syncing-a-fork/
https://help.github.com/articles/syncing-a-fork/

OpenDataHub Docs Documentation, Release 1.0

Figure 6.6: A Merge Conflict.

The command will output the files with merge conflicts. See sample output in Figure 6.7.

Figure 6.7: Merge conflicts output.

4. Go the the listed files of the previous output and resolve all merge conflicts. The conflicts in the files begin with
<<<<<<< and end with >>>>>>>. The ======= separates the two versions.

You can resolve a conflict by simply deleting one of the two versions of the code and the inserted helper lines
beginning with <<<<<<<, =======, and >>>>>>>.

If none of the two versions is completely correct, then you can delete the conflict entirely and write your own
code to solve the conflict.

5. Add all resolved files to the index, commit the changes and push the changes to the server.

git add -A
git commit
git push

6. After resolving the merge conflicts, the pull request can be accepted.

A more detailed description can be found in the online Github help: https://help.github.com/articles/
resolving-a-merge-conflict-using-the-command-line/.

6.2. Resources for Developers 69

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/

OpenDataHub Docs Documentation, Release 1.0

Figure 6.8: Solving a merge conflicts.

70 Chapter 6. Appendices

OpenDataHub Docs Documentation, Release 1.0

Figure 6.9: A solved merge conflict.

6.3 Glossary

API The Application Programming Interface is a collection of methods that a software program makes available to
allow interaction with other programs

Claim In JSON Web Token, a claim is a piece of information about a subject, structured as a key/value pair.

DAL The DAL is used by the reader and writer to communicate with the database. See the detailed description.

Data Collector A component of the Big Data Platform, a data collector is used to gather data from datasets and send
them to the Big Data Platform. See the detailed description.

Data Consumers Applications that use data received from the Web Services. See the detailed description.

Data format Data format is the way information is encoded and exchanged between applications.

Data Source A Data Source is the origin of a dataset. See the detailed description.

Database Also known as persistence layer, the database (“DB”) stores all the data received by the writer. See the
detailed description.

Dataset A dataset is a collection of records from a Data source. See the detailed description.

Domain A domain is a category of interest to which one or more datasets belong to.

DTO A core component of the Big Data Platform, the DTO transforms the data format of a Source into a Big Data
Platform-understandable format. See the detailed description.

JSON The JavaScript Object Notation is a lightweight data format to ease the exchange of data between computer
and its understanding for humans. Essentially a JSON file is a sequence of key-value pairs, organised into lists
(arrays, sequences, vectors). Nesting of key-values and of lists is supported.

6.3. Glossary 71

OpenDataHub Docs Documentation, Release 1.0

JSON Web Token It is a mechanism to exchange a claim between two parties, used for authentication purposes when
the claim is digitally signed and/or encrypted.

Key-value Also called name-value pair or attribute-name pair, a key-value pair is a simple data structure in which
information are stored as tuples {attribute, value}, with no constraint of uniqueness on both attribute and value.

ODHtags In the tourism domain, this name refers to all the tags/filter that refer to data that have been validated by
the Open Data Hub team.

Persistence layer Another name for Database, see the above entry or the detailed description.

Reader A core component of the Big Data Platform, the Reader extract data form the Database and sends it to the
web services. See the detailed description.

Statistical graphics Statistical graphics are means to display statistical data with the purpose to ease their interpreta-
tions. Common statistical graphics include pie charts, histograms, and scatter plot.

Web Services In the context of the Open Data Hub Project, web services expose to Data Consumers the data received
from the reader. See the detailed description.

Writer The Writer is a core component of the Big Data Platform. It receives data from the Data Collectors and stores
them in the Database. See the detailed description.

6.4 Licenses and TOS for the Open Data Hub material

The resources that are part of the Open Data Hub Project are subject to different licenses, which are described in section
Licenses for Open Data Hub resources. Derivative material built using Open Data Hub material is also subjected to
different licenses, depending on its purpose, as shown in Figure 6.10.

6.4.1 The FLOSS four freedoms

The four essential freedoms are the four basic principle to which a software program must comply to be defined free
software. As stated on the What is free software? web page (on which you can find a lot more information and details),
they are:

• The freedom to run the program as you wish, for any purpose (freedom 0).

• The freedom to study how the program works, and change it so it does your computing as you wish (freedom
1).. Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help others (freedom 2).

• The freedom to distribute copies of your modified versions to others (freedom 3). By doing this you can give
the whole community a chance to benefit from your changes. Access to the source code is a precondition for
this.

6.4.2 Licenses for Open Data Hub resources

According to the main goal of the Open Data Hub Project, we have defined licenses for its different components and
we use badges across the documentation for a better visibility. As a rule of thumb, we try to do our best to deliver
Open Data by developing Free/Open Source software and by using an Open Standard for the API used to access data.

The Open Data Hub Project exposes data, possibly of third-party sources. Without the use of authentication, only
Open Data are returned. These licenses are applied to the Open Data Hub components:

• All the software released within the Open Data Hub is Free software and complies with the GPLv3 license.

72 Chapter 6. Appendices

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/licenses/gpl-3.0.en.html

OpenDataHub Docs Documentation, Release 1.0

Figure 6.10: Licenses for the Open Data Hub and derivative material.

6.4. Licenses and TOS for the Open Data Hub material 73

OpenDataHub Docs Documentation, Release 1.0

• Datasets currently expose only open data that are in the public domain, so they are released as CC0.

• APIs have no license yet, since we are in the process to define which among the CC licenses could fit best. See
Figure 6.11 for an overview and quick description of CC licenses and derivative material.

Figure 6.11: Creative Common Licenses and derivative material.

6.4.3 APIs Terms of Service

The Open Data Hub project is already used in production for IDM internal projects, and in particular it is the data hub
used by the South Tyrolean tourism portal www.suedtirol.info.

The public API are in early development and therefore should be still considered as a beta version. If any third party
would like to use a stable version of the APIs in its production environment, a special agreement must be signed with
IDM Südtirol - Alto Adige. You can contact info@opendatahub.bz.it for any information.

74 Chapter 6. Appendices

https://creativecommons.org/publicdomain/zero/1.0/
https://www.idm-suedtirol.com/

Index

Symbols
-header, -H

command line option, 23
-X

command line option, 23
10-07-2018, 62

A
API, 71

C
Claim, 71
command line option

-header, -H, 23
-X, 23

D
DAL, 71
Data Collector, 71
Data Consumers, 71
Data format, 71
Data Source, 71
Database, 71
Dataset, 71
Date, 63
date, 53, 62–64
Date.prototype.toISOString(), 64
de_DE, 62
Domain, 71
DTO, 71

E
en_US, 53, 62
environment variable

10-07-2018, 62
Date, 63
date, 53, 62–64
Date.prototype.toISOString(), 64
de_DE, 62

en_US, 53, 62
fetchsize, 59
it_IT, 62
localhost, 27
money, 62
numeric, 62
timestamp, 63, 64
timestamp with timezone, 53
timestamp without time zone, 63
UTF8, 53, 62

F
fetchsize, 59

I
it_IT, 62

J
JSON, 71
JSON Web Token, 72

K
Key-value, 72

L
localhost, 27

M
money, 62

N
numeric, 62

O
ODHtags, 72

P
Persistence layer, 72

75

OpenDataHub Docs Documentation, Release 1.0

R
Reader, 72
RFC

RFC 6749, 4
RFC 6750, 4, 5
RFC 7519#section-3, 4

S
Statistical graphics, 72

T
timestamp, 63, 64
timestamp with timezone, 53
timestamp without time zone, 63

U
UTF8, 53, 62

W
Web Services, 72
Writer, 72

76 Index

	Introduction
	Project Overview

	How To Contribute
	As a user I can…
	As an App Developer I can…
	As a Open Data Hub Core Hacker I can…
	Bug reporting and feature requests

	List of HOWTOs
	HOWTO access e-Charging Stations Data
	HOWTO access Tourism Data
	HOWTO use the Open Data Hub’s Tourism Data Browser
	Quick and (not-so) Dirty Tips for Tourism
	How to use authentication
	How to setup your local Development Environment
	How to Sett Up Postman (API Development Environment)
	How to insert and modify NOI Events

	Apps built from Open Data Hub datasets
	Alpha Stage Apps
	Beta Stage Apps
	Production Stage

	Frequently Asked Questions
	Appendices
	Datasets
	Resources for Developers
	Glossary
	Licenses and TOS for the Open Data Hub material

	Index

